用scikit-learn和pandas学习线性回归的方法


Posted in Python onJune 21, 2019

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。

1. 获取数据,定义问题

没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。

数据的介绍在这:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

数据的下载地址在这:http://archive.ics.uci.edu/ml/machine-learning-databases/00294/

里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。

我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:

用scikit-learn和pandas学习线性回归的方法

PE=θ 0 +θ 1 AT+θ 2 V+θ 3 AP+θ 4 RH 而需要学习的,就是\(\theta_0, \theta_1, \theta_2, \theta_3, \theta_4\)这5个参数。

2. 整理数据

下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。

打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。

好了,有了这个csv格式的数据,我们就可以大干一场了。

3.用pandas来读取数据

我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。

先把要导入的库声明了:

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model

接着我们就可以用pandas读取数据了:

# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里
data = pd.read_csv('.\CCPP\ccpp.csv')

测试下读取数据是否成功:

#读取前五行数据,如果是最后五行,用data.tail()
data.head()

运行结果应该如下,看到下面的数据,说明pandas读取数据成功:

  AT V AP RH PE
0 8.34 40.77 1010.84 90.01 480.48
1 23.64 58.49 1011.40 74.20 445.75
2 29.74 56.90 1007.15 41.91 438.76
3 19.07 49.69 1007.22 76.79 453.09
4 11.80 40.66 1017.13 97.20 464.43

4.准备运行算法的数据

我们看看数据的维度:

data.shape

结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。

现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。

X = data[['AT', 'V', 'AP', 'RH']]
X.head()

可以看到X的前五条输出如下:

  AT V AP RH
0 8.34 40.77 1010.84 90.01
1 23.64 58.49 1011.40 74.20
2 29.74 56.90 1007.15 41.91
3 19.07 49.69 1007.22 76.79
4 11.80 40.66 1017.13 97.20

接着我们准备样本输出y, 我们用PE作为样本输出。

y = data[['PE']]
y.head()

可以看到y的前五条输出如下:

  PE
0 480.48
1 445.75
2 438.76
3 453.09
4 464.43

5. 划分训练集和测试集

我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

查看下训练集和测试集的维度:

print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape

结果如下:

(7176, 4)
(7176, 1)
(2392, 4)
(2392, 1)

可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。

6. 运行scikit-learn的线性模型

终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:

from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)

拟合完毕后,我们看看我们的需要的模型系数结果:

print linreg.intercept_
print linreg.coef_

输出如下:

[ 447.06297099]
[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]

这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:

用scikit-learn和pandas学习线性回归的方法

7. 模型评价

我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。

我们看看我们的模型的MSE和RMSE,代码如下:

#模型拟合测试集
y_pred = linreg.predict(X_test)
from sklearn import metrics
# 用scikit-learn计算MSE
print "MSE:",metrics.mean_squared_error(y_test, y_pred)
# 用scikit-learn计算RMSE
print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))

输出如下:

MSE: 20.0804012021
RMSE: 4.48111606657

得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。

比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:

X = data[['AT', 'V', 'AP']]
y = data[['PE']]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)
#模型拟合测试集
y_pred = linreg.predict(X_test)
from sklearn import metrics
# 用scikit-learn计算MSE
print "MSE:",metrics.mean_squared_error(y_test, y_pred)
# 用scikit-learn计算RMSE
print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))

输出如下:

MSE: 23.2089074701
RMSE: 4.81756239919

可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。

8. 交叉验证 

我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:

X = data[['AT', 'V', 'AP', 'RH']]
y = data[['PE']]
from sklearn.model_selection import cross_val_predict
predicted = cross_val_predict(linreg, X, y, cv=10)
# 用scikit-learn计算MSE
print "MSE:",metrics.mean_squared_error(y, predicted)
# 用scikit-learn计算RMSE
print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))

输出如下:

MSE: 20.7955974619
RMSE: 4.56021901469

可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。

9. 画图观察结果

这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:

fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

输出的图像如下:

用scikit-learn和pandas学习线性回归的方法

完整的jupyter-notebook代码参看我的Github。

以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中实现的RC4算法
Feb 14 Python
用Python生成器实现微线程编程的教程
Apr 13 Python
Python字符和字符值(ASCII或Unicode码值)转换方法
May 21 Python
用Python抢过年的火车票附源码
Dec 07 Python
python监控linux内存并写入mongodb(推荐)
Sep 11 Python
5款非常棒的Python工具
Jan 05 Python
Python文本处理之按行处理大文件的方法
Apr 09 Python
Python使用Selenium爬取淘宝异步加载的数据方法
Dec 17 Python
python实现微信自动回复机器人功能
Jul 11 Python
Django获取应用下的所有models的例子
Aug 30 Python
Java多线程实现四种方式原理详解
Jun 02 Python
python实现对doc、txt、xls等文档的读写操作
Apr 02 Python
在pyqt5中QLineEdit里面的内容回车发送的实例
Jun 21 #Python
十分钟搞定pandas(入门教程)
Jun 21 #Python
pyqt5 QProgressBar清空进度条的实例
Jun 21 #Python
python实现Dijkstra算法的最短路径问题
Jun 21 #Python
解决pyinstaller打包发布后的exe文件打开控制台闪退的问题
Jun 21 #Python
pyqt5移动鼠标显示坐标的方法
Jun 21 #Python
python解析xml简单示例
Jun 21 #Python
You might like
无数据库的详细域名查询程序PHP版(1)
2006/10/09 PHP
PHP Mysql编程之高级技巧
2008/08/27 PHP
PHP中strtotime函数使用方法分享
2012/01/10 PHP
PHP 获取远程文件大小的3种解决方法
2013/07/11 PHP
浅谈PHP中output_buffering
2015/07/13 PHP
学习php设计模式 php实现模板方法模式
2015/12/08 PHP
Yii2 rbac权限控制之菜单menu实例教程
2016/04/28 PHP
js 操作select相关方法函数
2009/12/06 Javascript
用js实现计算加载页面所用的时间
2010/04/02 Javascript
关于onScroll事件在IE6下每次滚动触发三次bug说明
2011/09/21 Javascript
javaScript 利用闭包模拟对象的私有属性
2011/12/29 Javascript
jQuery 浮动导航菜单适合购物商品类型的网站
2014/09/09 Javascript
JavaScript数据类型详解
2015/04/01 Javascript
举例说明如何为JavaScript的方法参数设置默认值
2015/11/17 Javascript
js实现select二级联动下拉菜单
2020/04/17 Javascript
JavaScript如何实现跨域请求
2016/08/05 Javascript
jQuery插件fullPage.js实现全屏滚动效果
2016/12/02 Javascript
用vue构建多页面应用的示例代码
2017/09/20 Javascript
JavaScript实现QQ列表展开收缩扩展功能
2017/10/30 Javascript
vue 录制视频并压缩视频文件的方法
2018/07/27 Javascript
用POSTMAN发送JSON格式的POST请求示例
2018/09/04 Javascript
vue实现一拉到底的滑动验证
2019/07/25 Javascript
vue源码中的检测方法的实现
2019/09/26 Javascript
[01:36:57]【09DOTA2第一视角】小骷髅
2014/04/16 DOTA
python批量修改文件名的实现代码
2014/09/01 Python
python爬虫入门教程之糗百图片爬虫代码分享
2014/09/02 Python
Python简单实现两个任意字符串乘积的方法示例
2018/04/12 Python
对Python获取屏幕截图的4种方法详解
2019/08/27 Python
python实现低通滤波器代码
2020/02/26 Python
Python+Django+MySQL实现基于Web版的增删改查的示例代码
2020/05/13 Python
加拿大在线隐形眼镜专家:PerfectLens.ca
2016/11/19 全球购物
美国巧克力喷泉品牌:Sephra
2019/05/05 全球购物
Joseph官网:英国小众奢侈品牌
2019/05/17 全球购物
如何拷贝一整个Java对象,包括它的状态
2013/12/27 面试题
应届毕业生如何写求职信
2014/02/16 职场文书
春节联欢晚会主持词
2014/03/24 职场文书