Python之matplotlib绘制折线图


Posted in Python onApril 13, 2022

前面我们已经构造了一种图形可视化的模板了,下面我们直接使用这个模板进行增添和修改,进一步的改善图形的外观。

import matplotlib.pyplot as plt
 
# 画布
plt.figure(figsize=(9,3),   # (宽度 , 高度) 单位inch 
           dpi=100,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
# ax = plt.gca()
# ax.plot()
 
plt.plot()
plt.show()

Python之matplotlib绘制折线图

设置好基本的图形之后,我们就可以向上面添加一些数据了

(图例放置位置)

"""legend( handles=(line1, line2, line3),
           labels=('label1', 'label2', 'label3'),
           'upper right')
    The *loc* location codes are::
          'best' : 0,          (currently not supported for figure legends)
          'upper right'  : 1,
          'upper left'   : 2,
          'lower left'   : 3,
          'lower right'  : 4,
          'right'        : 5,
          'center left'  : 6,
          'center right' : 7,
          'lower center' : 8,
          'upper center' : 9,
          'center'       : 10,"""

折线图案例

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=100,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend(loc='lower right')  # 不带参数的时候,使用图形的label属性
# plt.legend(labels=['sin','cos'])
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 12, 'fontweight': 'bold', 'color': 'green'}
plt.title("sin(x) and cos(x)",loc='center',y=0.9, fontdict=font_dict)

Python之matplotlib绘制折线图

查看全局参数

# matplotlib.pyplot的全局参数
plt.rcParams
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 设置中文字体
plt.rcParams['axes.unicode_minus'] = False    # 不使用中文减号
plt.rcParams['font.sans-serif'] = 'FangSong'  # 设置字体为仿宋(FangSong)
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=120,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend()
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'grey'}
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=0.9, fontdict=font_dict)

Python之matplotlib绘制折线图

 改变字体

# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'grey'}
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=0.9, fontdict=font_dict)

Python之matplotlib绘制折线图

添加X轴和Y轴

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=120,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  # 
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
 
 
 
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'black','fontfamily':'KaiTi'}
 
# 设置全局中文字体
plt.rcParams['font.sans-serif'] = 'KaiTi' # 设置全局字体为中文 楷体
plt.rcParams['axes.unicode_minus'] = False # 不使用中文减号
 
# 常用中文字体
# 宋体 SimSun
# 黑体 SimHei
# 微软雅黑 Microsoft YaHei
# 微软正黑体 Microsoft JhengHei
# 新宋体 NSimSun
# 新细明体 PMingLiU
# 细明体 MingLiU
# 标楷体 DFKai-SB
# 仿宋 FangSong
# 楷体 KaiTi
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=1, fontdict=font_dict)
 
# Axes 坐标系设置
ax = plt.gca()  # 获取当前坐标系
ax.set_facecolor('#FEFEFE')  # 设置坐标系参数。。。。
#plt.xlabel()  =>  ax.set_xlabel()
# ax.set_facecolor('#EE2211')
# ax.set_alpha(0.15)
# plt.title() => ax.set_title("AX TITLE")  
 
 
# X轴标签
plt.xlabel("X轴")  # loc: 左中右 left-center-right
# Y轴标签
plt.ylabel("Y轴")   # loc: 上中下 top-center-bottom
 
# X轴范围
plt.xlim(0,np.pi)  # 只显示X在0-Pi之间的部分
# Y轴范围
plt.ylim([0,1.1])  # 只显示Y在0-1之间的部分
 
# X轴刻度
xticks = np.array([0,1/4,2/4,3/4,1]) * np.pi      # X 轴上刻度的值
labels = ["0",'1/4 Π','1/2 Π','3/4 Π', 'Π']  # X 轴上刻度标签
plt.xticks(xticks, labels)   # 如果没有传入labels,直接使用ticks作为labels
# Y轴刻度
yticks = np.arange(0.0,1.2,0.2)     # X 轴上刻度的值
plt.yticks(yticks)   # 如果没有传入labels,直接使用ticks作为labels
 
# 根据刻度画网格线
#plt.grid()
plt.grid(axis='x')  # axis: both, x, y 在哪个轴上画格子
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend()
# plt.legend(labels=['sin','cos'])

Python之matplotlib绘制折线图

 折线图绘制万能模板

# 处理数据
df = pd.read_csv(r'unemployment-rate-1948-2010.csv',usecols=['Year','Period','Value'])
df.replace('^M','-',regex=True, inplace=True)
df['year_month'] = df['Year'].astype('U') + df['Period']
 
# 设置画布和参数
plt.figure(figsize=(16,4), dpi=130, facecolor='white', edgecolor='black', frameon=True)# 画布底色
 
 
# 添加数据
plt.plot(df['year_month'], df['Value'],'c')#改变颜色和线条
 
'''
一般不需要改动下面的,只需要设置一些固定常量
'''
 
# 构造X轴标签,一般不用设置
xticks = [df['year_month'][i] for i in np.arange(0,df['year_month'].size,15)]#X轴的显示
#X轴设置倾斜度,可以解决标签过长的问题,大小可以设置默认
plt.xticks(xticks,rotation=100,size=10)
 
# 设置图形上的各类主题值
plt.suptitle('主标题:unemployment-rate-1948-2010',size=17,y=1.0)
plt.title("绘制日期:2022年   昵称:王小王-123", loc='right',size=15,y=1)
 
plt.title("主页:https://blog.csdn.net/weixin_47723732", loc='left',size=12,y=1)
 
# 设置坐标轴上的字体标签
font_dict = {'fontsize': 15, 'fontweight': 'bold', 'color': 'black','fontfamily':'KaiTi'}
plt.xlabel('年月',font_dict)
plt.ylabel('失业率',font_dict)

Python之matplotlib绘制折线图

到此这篇关于matplotlib绘制折线图的基本配置(万能模板案例)的文章就介绍到这了!

Python 相关文章推荐
Python和Ruby中each循环引用变量问题(一个隐秘BUG?)
Jun 04 Python
深度剖析使用python抓取网页正文的源码
Jun 11 Python
采用Psyco实现python执行速度提高到与编译语言一样的水平
Oct 11 Python
python爬取w3shcool的JQuery课程并且保存到本地
Apr 06 Python
基于numpy中数组元素的切片复制方法
Nov 15 Python
Python基础之文件读取的讲解
Feb 16 Python
使用pycharm在本地开发并实时同步到服务器
Aug 02 Python
解决Tensorboard可视化错误:不显示数据 No scalar data was found
Feb 15 Python
QML用PathView实现轮播图
Jun 03 Python
python如何获得list或numpy数组中最大元素对应的索引
Nov 16 Python
Python基于template实现字符串替换
Nov 27 Python
python引入其他文件夹下的py文件具体方法
May 23 Python
Python之matplotlib绘制饼图
Python线程池与GIL全局锁实现抽奖小案例
Python之Matplotlib绘制热力图和面积图
Python matplotlib绘制雷达图
Python万能模板案例之matplotlib绘制甘特图
Python万能模板案例之matplotlib绘制直方图的基本配置
python创建字典及相关管理操作
You might like
PHP中常用的数组操作方法笔记整理
2016/05/16 PHP
PHP分页初探 一个最简单的PHP分页代码的简单实现
2016/06/21 PHP
实例讲解YII2中多表关联的使用方法
2017/07/21 PHP
js为空或不是对象问题的快速解决方法
2013/12/11 Javascript
jquery实现的V字形显示效果代码
2015/10/27 Javascript
jQuery Easyui使用(二)之可折叠面板动态加载无效果的解决方法
2016/08/17 Javascript
利用BootStrap弹出二级对话框的简单实现方法
2016/09/21 Javascript
JS动态给对象添加属性和值的实现方法
2016/10/21 Javascript
手动初始化Angular的模块与控制器
2016/12/26 Javascript
js分页之前端代码实现和请求处理
2017/08/04 Javascript
Express之托管静态文件的方法
2018/06/01 Javascript
小程序实现授权登陆的解决方案
2018/12/02 Javascript
在Koa.js中实现文件上传的接口功能
2019/10/08 Javascript
vue+element导航栏高亮显示的解决方式
2019/11/12 Javascript
微信小程序实现多选框全选与反全选及购物车中删除选中的商品功能
2019/12/17 Javascript
[06:53]2018DOTA2国际邀请赛寻真——为复仇而来的Newbee
2018/08/15 DOTA
python常规方法实现数组的全排列
2015/03/17 Python
Python3 循环语句(for、while、break、range等)
2017/11/20 Python
python简单图片操作:打开\显示\保存图像方法介绍
2017/11/23 Python
python代码过长的换行方法
2018/07/19 Python
使用python的pandas库读取csv文件保存至mysql数据库
2018/08/20 Python
python3学生名片管理v2.0版
2018/11/29 Python
python lxml中etree的简单应用
2019/05/10 Python
Python2.7实现多进程下开发多线程示例
2019/05/31 Python
pytorch自定义初始化权重的方法
2019/08/17 Python
在keras里面实现计算f1-score的代码
2020/06/15 Python
Pytest如何使用skip跳过执行测试
2020/08/13 Python
TUMI马来西亚官方网站:国际领先的高品质商旅箱包品牌
2018/04/26 全球购物
美国在线纱线商店:Darn Good Yarn
2019/03/20 全球购物
开业典礼主持词
2014/03/21 职场文书
活动总结模板
2014/05/09 职场文书
会议欢迎词范文
2015/01/27 职场文书
党员考试作弊检讨书1000字
2015/02/16 职场文书
写给媳妇的检讨书
2015/05/06 职场文书
Python中的变量与常量
2021/11/11 Python
xhunter1.sys可以删除嘛? win11提示xhunter1.sys驱动不兼容解决办法
2022/09/23 数码科技