python自动化操作之动态验证码、滑动验证码的降噪和识别


Posted in Python onAugust 30, 2021

前言

python对动态验证码、滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人。这里我们就详细讲解一下不同验证码的降噪和识别。

一、动态验证码 

  • 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期
  • 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次,这个验证码的内容已经被更换了
  • 最好的方法是,打开这个页面后,将页面进行截图,然后定位到验证码的位置,将验证码从截图上面裁剪下来进行识别,这样就不会造成多次请求,验证码更换的情况了

python自动化操作之动态验证码、滑动验证码的降噪和识别

from selenium import webdriver
from PIL import Image
 
# 实例化浏览器
driver = webdriver.Chrome()
 
# 最大化窗口
driver.maximize_window()
 
# 打开登陆页面
driver.get(# 你的url地址)
 
# 保存页面截图
driver.get_screenshot_as_file('./screen.png')
 
# 定位验证码的位置
location = driver.find_element_by_id('login_yzm_img').location
size = driver.find_element_by_id('login_yzm_img').size
left = location['x']
top =  location['y']
right = location['x'] + size['width']
bottom = location['y'] + size['height']
 
# 裁剪保存
img = Image.open('./screen.png').crop((left,top,right,bottom))
img.save('./code.png')
 
driver.quit()

二、滑动验证码

  • 滑动验证码,通常是两个滑块图片,将小图片滑动到大图片上的缺口位置,进行重合,即可通过验证
  • 对于滑动验证码,我们就要识别大图上面的缺口位置,然后让小滑块滑动响应的位置距离,即可
  • 而为了让你滑动起来,更加的拟人化,你需要一个滑动的路径,模拟人为去滑动,而不是机器去滑动

python自动化操作之动态验证码、滑动验证码的降噪和识别

# 下载两个滑块
bg = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[1]').get_attribute('src')
slider = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[2]').get_attribute('src')
 
request.urlretrieve(bg, os.getcwd() + '/bg.png')
request.urlretrieve(slider, os.getcwd() + '/slider.png')
 
 
# 获取两个滑块偏移量方法
def getGap(self, sliderImage, bgImage):
    '''
    Get the gap distance
    :param sliderImage: the image of slider
    :param bgImage: the image of background
    :return: int
    '''
    bgImageInfo = cv2.imread(bgImage, 0)
    bgWidth, bgHeight = bgImageInfo.shape[::-1]
    bgRgb = cv2.imread(bgImage)
    bgGray = cv2.cvtColor(bgRgb, cv2.COLOR_BGR2GRAY)
 
    slider = cv2.imread(sliderImage, 0)
    sliderWidth, sliderHeight = slider.shape[::-1]
 
    res = cv2.matchTemplate(bgGray, slider, cv2.TM_CCOEFF)
    a, b, c, d = cv2.minMaxLoc(res)
    # print(a,b,c,d)
    # 正常如下即可
    # return c[0] if abs(a) >= abs(b) else d[0]
    # 但是头条显示验证码的框跟验证码本身的像素不一致,所以需要根据比例计算
    if abs(a) >= abs(b):
        return c[0] * bgWidth / (bgWidth - sliderWidth)
    else:
        return d[0] * bgWidth / (bgWidth - sliderWidth)
 
# 移动路径方法
def getTrack(self, distance):
    '''
    Get the track by the distance
    :param distance: the distance of gap
    :return: list
    '''
    # 移动轨迹
    track = []
    # 当前位移
    current = 0
    # 减速阈值
    mid = distance * 4 / 5
    # 计算间隔
    t = 0.2
    # 初速度
    v = 0
 
    while current < distance:
        if current < mid:
            # 加速度为正2
            a = 2
        else:
            # 加速度为负3
            a = -3
        # 初速度v0
        v0 = v
        # 当前速度v = v0 + at
        v = v0 + a * t
        # 移动距离x = v0t + 1/2 * a * t^2
        move = v0 * t + 1 / 2 * a * t * t
        # 当前位移
        current += move
        # 加入轨迹
        track.append(round(move))
    return track
 
 
# 滑动到缺口位置
def moveToGap(self, track):
    '''
    Drag the mouse to gap
    :param track: the track of mouse
    :return: None
    '''
    ActionChains(self.driver).click_and_hold(self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[3]/div[2]/div[2]/div')).perform()
    while track:
        x = random.choice(track)
        ActionChains(self.driver).move_by_offset(xoffset=x, yoffset=0).perform()
        track.remove(x)
    time.sleep(0.5)
    ActionChains(self.driver).release().perform()

三、验证码的降噪

验证码的降噪,只是为了处理验证码图像上的多余的线条和干扰线,让你后期识别更加的准确,提高识别的准确度

第一步:可以进行灰度转化

python自动化操作之动态验证码、滑动验证码的降噪和识别

python自动化操作之动态验证码、滑动验证码的降噪和识别

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('min_gray',gray)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第二步: 二值化处理

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
cv2.imshow('threshold',gray2)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第三步:噪点过滤

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
def remove_noise(img, k=4):
    img2 = img.copy()
 
    #     img处理数据,k过滤条件
    w, h = img2.shape
 
    def get_neighbors(img3, r, c):
        count = 0
        for i in [r - 1, r, r + 1]:
            for j in [c - 1, c, c + 1]:
                if img3[i, j] > 10:  # 纯白色
                    count += 1
        return count
 
    #     两层for循环判断所有的点
    for x in range(w):
        for y in range(h):
            if x == 0 or y == 0 or x == w - 1 or y == h - 1:
                img2[x, y] = 255
            else:
                n = get_neighbors(img2, x, y)  # 获取邻居数量,纯白色的邻居
                if n > k:
                    img2[x, y] = 255
    return img2
 
 
result = remove_noise(gray2)
cv2.imshow('8neighbors', result)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

四、验证码的识别

通常我们会使用tesserocr识别验证码,但是这个库有很大的局限性,识别率低,即时降噪效果很好,有很少的线条,也会不准确,这种识别方式并不十分推荐

所以我们一般会使用第三方的接口进行识别,比如阿里的图片识别、腾讯也都是有的

这些第三方接口需要自己接入识别接口

#识别降噪后的图片
code = tesserocr.image_to_text(nrImg)
 
#消除空白字符
code.strip()
 
#打印
print(code)

总结

到此这篇关于python自动化操作之动态验证码、滑动验证码的降噪和识别的文章就介绍到这了,更多相关python动态验证码降噪和识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中用于返回绝对值的abs()方法
May 14 Python
简单谈谈Python中的反转字符串问题
Oct 24 Python
Python实现购物系统(示例讲解)
Sep 13 Python
python使用response.read()接收json数据的实例
Dec 19 Python
对Python3.x版本print函数左右对齐详解
Dec 22 Python
python获取本机所有IP地址的方法
Dec 26 Python
Python产生一个数值范围内的不重复的随机数的实现方法
Aug 21 Python
python自动生成model文件过程详解
Nov 02 Python
Python类中self参数用法详解
Feb 13 Python
解决pycharm安装第三方库失败的问题
May 09 Python
在keras里面实现计算f1-score的代码
Jun 15 Python
Python 爬虫性能相关总结
Aug 03 Python
Python图片验证码降噪和8邻域降噪
Aug 30 #Python
Python音乐爬虫完美绕过反爬
Aug 30 #Python
详解解Django 多对多表关系的三种创建方式
Aug 23 #Python
一些让Python代码简洁的实用技巧总结
Aug 23 #Python
一篇文章搞懂python混乱的切换操作与优雅的推导式
Aug 23 #Python
Python学习开发之图形用户界面详解
Aug 23 #Python
利用Python读取微信朋友圈的多种方法总结
Aug 23 #Python
You might like
mysql中存储过程、函数的一些问题
2007/02/14 PHP
解析phpstorm + xdebug 远程断点调试
2013/06/20 PHP
YII Framework框架教程之安全方案详解
2016/03/14 PHP
php设计模式之原型模式分析【星际争霸游戏案例】
2020/03/23 PHP
js停止输出代码
2008/07/20 Javascript
用函数模板,写一个简单高效的 JSON 查询器的方法介绍
2013/04/17 Javascript
JS点击链接后慢慢展开隐藏着图片的方法
2015/02/17 Javascript
JS+CSS实现淡入式焦点图片幻灯切换效果的方法
2015/02/26 Javascript
js使用setTimeout实现定时炸弹的方法
2015/04/10 Javascript
学习JavaScript图片预加载模块
2016/11/07 Javascript
利用js来实现缩略语列表、文献来源链接和快捷键列表
2016/12/16 Javascript
Angular.Js中ng-include指令的使用与实现
2017/05/07 Javascript
JavaScript正则表达式的贪婪匹配和非贪婪匹配
2017/09/05 Javascript
详解vue.js数据传递以及数据分发slot
2018/01/20 Javascript
Node.js成为Web应用开发最佳选择的原因
2018/02/05 Javascript
Node.js之readline模块的使用详解
2019/03/25 Javascript
js继承的这6种方式!(上)
2019/04/23 Javascript
微信小程序点餐系统开发常见问题汇总
2019/08/06 Javascript
[02:09]EHOME夺得首届辉夜杯冠军—现场颁奖仪式
2015/12/28 DOTA
Python日期操作学习笔记
2008/10/07 Python
Python安装Flask环境及简单应用示例
2019/05/03 Python
用Anaconda安装本地python包的方法及路径问题(图文)
2019/07/16 Python
Django实现WebSSH操作物理机或虚拟机的方法
2019/11/06 Python
Jupyter Notebook的连接密码 token查询方式
2020/04/21 Python
python 用pandas实现数据透视表功能
2020/12/21 Python
Right-on官方网站:日本知名的休闲服装品牌
2019/07/12 全球购物
罗技美国官网:Logitech美国
2020/01/22 全球购物
初中作文评语大全
2014/04/23 职场文书
论文评语大全
2014/04/29 职场文书
六查六看六改心得体会
2014/10/14 职场文书
见习报告的格式
2014/10/31 职场文书
2014年体育教师工作总结
2014/12/03 职场文书
2015年学校保卫部工作总结
2015/05/11 职场文书
初中运动会前导词
2015/07/20 职场文书
Python激活Anaconda环境变量的详细步骤
2021/06/08 Python
详解Python如何批量采集京东商品数据流程
2022/01/22 Python