python自动化操作之动态验证码、滑动验证码的降噪和识别


Posted in Python onAugust 30, 2021

前言

python对动态验证码、滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人。这里我们就详细讲解一下不同验证码的降噪和识别。

一、动态验证码 

  • 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期
  • 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次,这个验证码的内容已经被更换了
  • 最好的方法是,打开这个页面后,将页面进行截图,然后定位到验证码的位置,将验证码从截图上面裁剪下来进行识别,这样就不会造成多次请求,验证码更换的情况了

python自动化操作之动态验证码、滑动验证码的降噪和识别

from selenium import webdriver
from PIL import Image
 
# 实例化浏览器
driver = webdriver.Chrome()
 
# 最大化窗口
driver.maximize_window()
 
# 打开登陆页面
driver.get(# 你的url地址)
 
# 保存页面截图
driver.get_screenshot_as_file('./screen.png')
 
# 定位验证码的位置
location = driver.find_element_by_id('login_yzm_img').location
size = driver.find_element_by_id('login_yzm_img').size
left = location['x']
top =  location['y']
right = location['x'] + size['width']
bottom = location['y'] + size['height']
 
# 裁剪保存
img = Image.open('./screen.png').crop((left,top,right,bottom))
img.save('./code.png')
 
driver.quit()

二、滑动验证码

  • 滑动验证码,通常是两个滑块图片,将小图片滑动到大图片上的缺口位置,进行重合,即可通过验证
  • 对于滑动验证码,我们就要识别大图上面的缺口位置,然后让小滑块滑动响应的位置距离,即可
  • 而为了让你滑动起来,更加的拟人化,你需要一个滑动的路径,模拟人为去滑动,而不是机器去滑动

python自动化操作之动态验证码、滑动验证码的降噪和识别

# 下载两个滑块
bg = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[1]').get_attribute('src')
slider = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[2]').get_attribute('src')
 
request.urlretrieve(bg, os.getcwd() + '/bg.png')
request.urlretrieve(slider, os.getcwd() + '/slider.png')
 
 
# 获取两个滑块偏移量方法
def getGap(self, sliderImage, bgImage):
    '''
    Get the gap distance
    :param sliderImage: the image of slider
    :param bgImage: the image of background
    :return: int
    '''
    bgImageInfo = cv2.imread(bgImage, 0)
    bgWidth, bgHeight = bgImageInfo.shape[::-1]
    bgRgb = cv2.imread(bgImage)
    bgGray = cv2.cvtColor(bgRgb, cv2.COLOR_BGR2GRAY)
 
    slider = cv2.imread(sliderImage, 0)
    sliderWidth, sliderHeight = slider.shape[::-1]
 
    res = cv2.matchTemplate(bgGray, slider, cv2.TM_CCOEFF)
    a, b, c, d = cv2.minMaxLoc(res)
    # print(a,b,c,d)
    # 正常如下即可
    # return c[0] if abs(a) >= abs(b) else d[0]
    # 但是头条显示验证码的框跟验证码本身的像素不一致,所以需要根据比例计算
    if abs(a) >= abs(b):
        return c[0] * bgWidth / (bgWidth - sliderWidth)
    else:
        return d[0] * bgWidth / (bgWidth - sliderWidth)
 
# 移动路径方法
def getTrack(self, distance):
    '''
    Get the track by the distance
    :param distance: the distance of gap
    :return: list
    '''
    # 移动轨迹
    track = []
    # 当前位移
    current = 0
    # 减速阈值
    mid = distance * 4 / 5
    # 计算间隔
    t = 0.2
    # 初速度
    v = 0
 
    while current < distance:
        if current < mid:
            # 加速度为正2
            a = 2
        else:
            # 加速度为负3
            a = -3
        # 初速度v0
        v0 = v
        # 当前速度v = v0 + at
        v = v0 + a * t
        # 移动距离x = v0t + 1/2 * a * t^2
        move = v0 * t + 1 / 2 * a * t * t
        # 当前位移
        current += move
        # 加入轨迹
        track.append(round(move))
    return track
 
 
# 滑动到缺口位置
def moveToGap(self, track):
    '''
    Drag the mouse to gap
    :param track: the track of mouse
    :return: None
    '''
    ActionChains(self.driver).click_and_hold(self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[3]/div[2]/div[2]/div')).perform()
    while track:
        x = random.choice(track)
        ActionChains(self.driver).move_by_offset(xoffset=x, yoffset=0).perform()
        track.remove(x)
    time.sleep(0.5)
    ActionChains(self.driver).release().perform()

三、验证码的降噪

验证码的降噪,只是为了处理验证码图像上的多余的线条和干扰线,让你后期识别更加的准确,提高识别的准确度

第一步:可以进行灰度转化

python自动化操作之动态验证码、滑动验证码的降噪和识别

python自动化操作之动态验证码、滑动验证码的降噪和识别

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('min_gray',gray)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第二步: 二值化处理

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
cv2.imshow('threshold',gray2)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第三步:噪点过滤

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
def remove_noise(img, k=4):
    img2 = img.copy()
 
    #     img处理数据,k过滤条件
    w, h = img2.shape
 
    def get_neighbors(img3, r, c):
        count = 0
        for i in [r - 1, r, r + 1]:
            for j in [c - 1, c, c + 1]:
                if img3[i, j] > 10:  # 纯白色
                    count += 1
        return count
 
    #     两层for循环判断所有的点
    for x in range(w):
        for y in range(h):
            if x == 0 or y == 0 or x == w - 1 or y == h - 1:
                img2[x, y] = 255
            else:
                n = get_neighbors(img2, x, y)  # 获取邻居数量,纯白色的邻居
                if n > k:
                    img2[x, y] = 255
    return img2
 
 
result = remove_noise(gray2)
cv2.imshow('8neighbors', result)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

四、验证码的识别

通常我们会使用tesserocr识别验证码,但是这个库有很大的局限性,识别率低,即时降噪效果很好,有很少的线条,也会不准确,这种识别方式并不十分推荐

所以我们一般会使用第三方的接口进行识别,比如阿里的图片识别、腾讯也都是有的

这些第三方接口需要自己接入识别接口

#识别降噪后的图片
code = tesserocr.image_to_text(nrImg)
 
#消除空白字符
code.strip()
 
#打印
print(code)

总结

到此这篇关于python自动化操作之动态验证码、滑动验证码的降噪和识别的文章就介绍到这了,更多相关python动态验证码降噪和识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
多线程爬虫批量下载pcgame图片url 保存为xml的实现代码
Jan 17 Python
Python中import导入上一级目录模块及循环import问题的解决
Jun 04 Python
Python简单遍历字典及删除元素的方法
Sep 18 Python
Python3安装Pymongo详细步骤
May 26 Python
python+opencv实现的简单人脸识别代码示例
Nov 14 Python
python实现整数的二进制循环移位
Mar 08 Python
Python 常用模块 re 使用方法详解
Jun 06 Python
python elasticsearch环境搭建详解
Sep 02 Python
tensorflow2.0与tensorflow1.0的性能区别介绍
Feb 07 Python
python isinstance函数用法详解
Feb 13 Python
Python预测2020高考分数和录取情况
Jul 08 Python
Python安装使用Scrapy框架
Apr 12 Python
Python图片验证码降噪和8邻域降噪
Aug 30 #Python
Python音乐爬虫完美绕过反爬
Aug 30 #Python
详解解Django 多对多表关系的三种创建方式
Aug 23 #Python
一些让Python代码简洁的实用技巧总结
Aug 23 #Python
一篇文章搞懂python混乱的切换操作与优雅的推导式
Aug 23 #Python
Python学习开发之图形用户界面详解
Aug 23 #Python
利用Python读取微信朋友圈的多种方法总结
Aug 23 #Python
You might like
PHP面向对象之后期静态绑定功能介绍
2015/05/18 PHP
PHP实现清除wordpress里恶意代码
2015/10/21 PHP
PHPExcel 修改已存在Excel的方法
2018/05/03 PHP
解决FireFox下[使用event很麻烦]的问题
2006/11/26 Javascript
js URL参数的拼接方法比较
2012/02/15 Javascript
A标签中通过href和onclick传递的this对象实现思路
2013/04/19 Javascript
JavaScript结合AJAX_stream实现流式显示
2015/01/08 Javascript
浅析AngularJS中的指令
2016/03/20 Javascript
简单掌握JavaScript中const声明常量与变量的用法
2016/05/21 Javascript
JS常用字符串方法(推荐)
2021/01/15 Javascript
微信小程序 122100版本更新问题解决方案
2016/12/22 Javascript
JS基于面向对象实现的多个倒计时器功能示例
2017/02/28 Javascript
微信小程序 flex实现导航实例详解
2017/04/26 Javascript
纯js实现的积木(div层)拖动功能示例
2017/07/19 Javascript
webpack实用小功能介绍
2018/01/02 Javascript
详解JavaScript 的变量
2019/03/08 Javascript
JS中间件设计模式的深入探讨与实例分析
2020/04/11 Javascript
vue 子组件修改data或调用操作
2020/08/07 Javascript
Vue解决移动端弹窗滚动穿透问题
2020/12/15 Vue.js
[33:23]VG vs Pain 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
详解在Python程序中使用Cookie的教程
2015/04/30 Python
python中nan与inf转为特定数字方法示例
2017/05/11 Python
Python使用一行代码获取上个月是几月
2018/08/30 Python
Python实现分段线性插值
2018/12/17 Python
Python+OpenCV图片局部区域像素值处理改进版详解
2019/01/23 Python
pyinstaller打包单个exe后无法执行错误的解决方法
2019/06/21 Python
Keras使用ImageNet上预训练的模型方式
2020/05/23 Python
印度尼西亚值得信赖的第一家网店:Bhinneka
2018/07/16 全球购物
澳大利亚买卖正宗二手奢侈品交易平台:Luxe.It.Fwd
2019/10/16 全球购物
幼儿园万圣节活动总结
2015/05/05 职场文书
幼儿园园长安全责任书
2015/05/08 职场文书
实习报告怎么写
2019/06/20 职场文书
创业计划之特色精品店
2019/08/12 职场文书
2019年手机市场的调研报告2篇
2019/10/10 职场文书
JavaScript实现淘宝商品图切换效果
2021/04/29 Javascript
linux下导入、导出mysql数据库命令的实现方法
2021/05/26 MySQL