python自动化操作之动态验证码、滑动验证码的降噪和识别


Posted in Python onAugust 30, 2021

前言

python对动态验证码、滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人。这里我们就详细讲解一下不同验证码的降噪和识别。

一、动态验证码 

  • 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期
  • 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次,这个验证码的内容已经被更换了
  • 最好的方法是,打开这个页面后,将页面进行截图,然后定位到验证码的位置,将验证码从截图上面裁剪下来进行识别,这样就不会造成多次请求,验证码更换的情况了

python自动化操作之动态验证码、滑动验证码的降噪和识别

from selenium import webdriver
from PIL import Image
 
# 实例化浏览器
driver = webdriver.Chrome()
 
# 最大化窗口
driver.maximize_window()
 
# 打开登陆页面
driver.get(# 你的url地址)
 
# 保存页面截图
driver.get_screenshot_as_file('./screen.png')
 
# 定位验证码的位置
location = driver.find_element_by_id('login_yzm_img').location
size = driver.find_element_by_id('login_yzm_img').size
left = location['x']
top =  location['y']
right = location['x'] + size['width']
bottom = location['y'] + size['height']
 
# 裁剪保存
img = Image.open('./screen.png').crop((left,top,right,bottom))
img.save('./code.png')
 
driver.quit()

二、滑动验证码

  • 滑动验证码,通常是两个滑块图片,将小图片滑动到大图片上的缺口位置,进行重合,即可通过验证
  • 对于滑动验证码,我们就要识别大图上面的缺口位置,然后让小滑块滑动响应的位置距离,即可
  • 而为了让你滑动起来,更加的拟人化,你需要一个滑动的路径,模拟人为去滑动,而不是机器去滑动

python自动化操作之动态验证码、滑动验证码的降噪和识别

# 下载两个滑块
bg = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[1]').get_attribute('src')
slider = self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[2]/img[2]').get_attribute('src')
 
request.urlretrieve(bg, os.getcwd() + '/bg.png')
request.urlretrieve(slider, os.getcwd() + '/slider.png')
 
 
# 获取两个滑块偏移量方法
def getGap(self, sliderImage, bgImage):
    '''
    Get the gap distance
    :param sliderImage: the image of slider
    :param bgImage: the image of background
    :return: int
    '''
    bgImageInfo = cv2.imread(bgImage, 0)
    bgWidth, bgHeight = bgImageInfo.shape[::-1]
    bgRgb = cv2.imread(bgImage)
    bgGray = cv2.cvtColor(bgRgb, cv2.COLOR_BGR2GRAY)
 
    slider = cv2.imread(sliderImage, 0)
    sliderWidth, sliderHeight = slider.shape[::-1]
 
    res = cv2.matchTemplate(bgGray, slider, cv2.TM_CCOEFF)
    a, b, c, d = cv2.minMaxLoc(res)
    # print(a,b,c,d)
    # 正常如下即可
    # return c[0] if abs(a) >= abs(b) else d[0]
    # 但是头条显示验证码的框跟验证码本身的像素不一致,所以需要根据比例计算
    if abs(a) >= abs(b):
        return c[0] * bgWidth / (bgWidth - sliderWidth)
    else:
        return d[0] * bgWidth / (bgWidth - sliderWidth)
 
# 移动路径方法
def getTrack(self, distance):
    '''
    Get the track by the distance
    :param distance: the distance of gap
    :return: list
    '''
    # 移动轨迹
    track = []
    # 当前位移
    current = 0
    # 减速阈值
    mid = distance * 4 / 5
    # 计算间隔
    t = 0.2
    # 初速度
    v = 0
 
    while current < distance:
        if current < mid:
            # 加速度为正2
            a = 2
        else:
            # 加速度为负3
            a = -3
        # 初速度v0
        v0 = v
        # 当前速度v = v0 + at
        v = v0 + a * t
        # 移动距离x = v0t + 1/2 * a * t^2
        move = v0 * t + 1 / 2 * a * t * t
        # 当前位移
        current += move
        # 加入轨迹
        track.append(round(move))
    return track
 
 
# 滑动到缺口位置
def moveToGap(self, track):
    '''
    Drag the mouse to gap
    :param track: the track of mouse
    :return: None
    '''
    ActionChains(self.driver).click_and_hold(self.driver.find_element_by_xpath('//*[@id="captcha_container"]/div/div[3]/div[2]/div[2]/div')).perform()
    while track:
        x = random.choice(track)
        ActionChains(self.driver).move_by_offset(xoffset=x, yoffset=0).perform()
        track.remove(x)
    time.sleep(0.5)
    ActionChains(self.driver).release().perform()

三、验证码的降噪

验证码的降噪,只是为了处理验证码图像上的多余的线条和干扰线,让你后期识别更加的准确,提高识别的准确度

第一步:可以进行灰度转化

python自动化操作之动态验证码、滑动验证码的降噪和识别

python自动化操作之动态验证码、滑动验证码的降噪和识别

img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('min_gray',gray)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第二步: 二值化处理

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
cv2.imshow('threshold',gray2)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

第三步:噪点过滤

python自动化操作之动态验证码、滑动验证码的降噪和识别

import cv2
 
img = cv2.imread('yzm.png')
# 将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
 
def remove_noise(img, k=4):
    img2 = img.copy()
 
    #     img处理数据,k过滤条件
    w, h = img2.shape
 
    def get_neighbors(img3, r, c):
        count = 0
        for i in [r - 1, r, r + 1]:
            for j in [c - 1, c, c + 1]:
                if img3[i, j] > 10:  # 纯白色
                    count += 1
        return count
 
    #     两层for循环判断所有的点
    for x in range(w):
        for y in range(h):
            if x == 0 or y == 0 or x == w - 1 or y == h - 1:
                img2[x, y] = 255
            else:
                n = get_neighbors(img2, x, y)  # 获取邻居数量,纯白色的邻居
                if n > k:
                    img2[x, y] = 255
    return img2
 
 
result = remove_noise(gray2)
cv2.imshow('8neighbors', result)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

四、验证码的识别

通常我们会使用tesserocr识别验证码,但是这个库有很大的局限性,识别率低,即时降噪效果很好,有很少的线条,也会不准确,这种识别方式并不十分推荐

所以我们一般会使用第三方的接口进行识别,比如阿里的图片识别、腾讯也都是有的

这些第三方接口需要自己接入识别接口

#识别降噪后的图片
code = tesserocr.image_to_text(nrImg)
 
#消除空白字符
code.strip()
 
#打印
print(code)

总结

到此这篇关于python自动化操作之动态验证码、滑动验证码的降噪和识别的文章就介绍到这了,更多相关python动态验证码降噪和识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python面向对象编程基础解析(一)
Oct 26 Python
Python实现读写INI配置文件的方法示例
Jun 09 Python
Python+OpenCV实现图像融合的原理及代码
Dec 03 Python
将python依赖包打包成window下可执行文件bat方式
Dec 26 Python
用Python做一个久坐提醒小助手的示例代码
Feb 10 Python
Python3的socket使用方法详解
Feb 18 Python
python数字类型math库原理解析
Mar 02 Python
python GUI库图形界面开发之PyQt5滚动条控件QScrollBar详细使用方法与实例
Mar 06 Python
Python爬虫JSON及JSONPath运行原理详解
Jun 04 Python
浅谈Selenium+Webdriver 常用的元素定位方式
Jan 13 Python
彻底解决pip下载pytorch慢的问题方法
Mar 01 Python
使paramiko库执行命令时在给定的时间强制退出功能的实现
Mar 03 Python
Python图片验证码降噪和8邻域降噪
Aug 30 #Python
Python音乐爬虫完美绕过反爬
Aug 30 #Python
详解解Django 多对多表关系的三种创建方式
Aug 23 #Python
一些让Python代码简洁的实用技巧总结
Aug 23 #Python
一篇文章搞懂python混乱的切换操作与优雅的推导式
Aug 23 #Python
Python学习开发之图形用户界面详解
Aug 23 #Python
利用Python读取微信朋友圈的多种方法总结
Aug 23 #Python
You might like
PHP 开源AJAX框架14种
2009/08/24 PHP
php实现监听事件
2013/11/06 PHP
PHP使用GIFEncoder类生成的GIF动态图片验证码
2014/07/01 PHP
php使用redis的有序集合zset实现延迟队列应用示例
2020/02/20 PHP
判断浏览器的javascript版本的代码
2010/09/03 Javascript
点击表单提交时出现jQuery没有权限的解决方法
2014/07/23 Javascript
基于jquery ui的alert,confirm方案(支持换肤)
2015/04/03 Javascript
原生JS实现美图瀑布流布局赏析
2015/09/07 Javascript
使用jquery给指定的table动态添加一行、删除一行
2016/10/13 Javascript
js实现开启密码大写提示
2016/12/21 Javascript
基于JavaScript实现本地图片预览
2017/02/08 Javascript
jQuery插件FusionCharts实现的2D面积图效果示例【附demo源码下载】
2017/03/06 Javascript
vue生成token保存在客户端localStorage中的方法
2017/10/25 Javascript
详解Vue2 SSR 缓存 Api 数据
2017/11/20 Javascript
vue中如何使用ztree
2018/02/06 Javascript
使用淘宝镜像cnpm安装Vue.js的图文教程
2018/05/17 Javascript
利用Promise自定义一个GET请求的函数示例代码
2019/03/20 Javascript
Vue中watch、computed、updated三者的区别及用法
2020/07/27 Javascript
python实现音乐下载器
2018/04/15 Python
python监测当前联网状态并连接的实例
2018/12/18 Python
python射线法判断检测点是否位于区域外接矩形内
2019/06/28 Python
基于pytorch的保存和加载模型参数的方法
2019/08/17 Python
利用python下载scihub成文献为PDF操作
2020/07/09 Python
详解Pycharm与anaconda安装配置指南
2020/08/25 Python
利用python批量爬取百度任意类别的图片的实现方法
2020/10/07 Python
Jupyter Notebook安装及使用方法解析
2020/11/12 Python
python实现猜拳游戏项目
2020/11/30 Python
日本钓鱼渔具和户外用品网上商店:naturum
2016/08/07 全球购物
廉政教育心得体会
2014/01/01 职场文书
大学同学聚会邀请函
2014/01/29 职场文书
会计自荐信范文
2014/03/09 职场文书
日化店促销方案
2014/03/26 职场文书
社区禁毒宣传活动总结
2015/05/07 职场文书
刑事附带民事上诉状
2015/05/23 职场文书
python 实现图与图之间的间距调整subplots_adjust
2021/05/21 Python
动态规划之使用备忘录来改进Javascript函数
2022/04/07 Javascript