Keras:Unet网络实现多类语义分割方式


Posted in Python onJune 11, 2020

1 介绍

U-Net最初是用来对医学图像的语义分割,后来也有人将其应用于其他领域。但大多还是用来进行二分类,即将原始图像分成两个灰度级或者色度,依次找到图像中感兴趣的目标部分。

本文主要利用U-Net网络结构实现了多类的语义分割,并展示了部分测试效果,希望对你有用!

2 源代码

(1)训练模型

from __future__ import print_function
import os
import datetime
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, AveragePooling2D, Dropout, \
 BatchNormalization
from keras.optimizers import Adam
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.layers.advanced_activations import LeakyReLU, ReLU
import cv2
 
PIXEL = 512 #set your image size
BATCH_SIZE = 5
lr = 0.001
EPOCH = 100
X_CHANNEL = 3 # training images channel
Y_CHANNEL = 1 # label iamges channel
X_NUM = 422 # your traning data number
 
pathX = 'I:\\Pascal VOC Dataset\\train1\\images\\' #change your file path
pathY = 'I:\\Pascal VOC Dataset\\train1\\SegmentationObject\\' #change your file path
 
#data processing
def generator(pathX, pathY,BATCH_SIZE):
 while 1:
  X_train_files = os.listdir(pathX)
  Y_train_files = os.listdir(pathY)
  a = (np.arange(1, X_NUM))
  X = []
  Y = []
  for i in range(BATCH_SIZE):
   index = np.random.choice(a)
   # print(index)
   img = cv2.imread(pathX + X_train_files[index], 1)
   img = np.array(img).reshape(PIXEL, PIXEL, X_CHANNEL)
   X.append(img)
   img1 = cv2.imread(pathY + Y_train_files[index], 1)
   img1 = np.array(img1).reshape(PIXEL, PIXEL, Y_CHANNEL)
   Y.append(img1)
 
  X = np.array(X)
  Y = np.array(Y)
  yield X, Y
 
 #creat unet network
inputs = Input((PIXEL, PIXEL, 3))
conv1 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
pool1 = AveragePooling2D(pool_size=(2, 2))(conv1) # 16
 
conv2 = BatchNormalization(momentum=0.99)(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization(momentum=0.99)(conv2)
conv2 = Conv2D(64, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = Dropout(0.02)(conv2)
pool2 = AveragePooling2D(pool_size=(2, 2))(conv2) # 8
 
conv3 = BatchNormalization(momentum=0.99)(pool2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization(momentum=0.99)(conv3)
conv3 = Conv2D(128, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = Dropout(0.02)(conv3)
pool3 = AveragePooling2D(pool_size=(2, 2))(conv3) # 4
 
conv4 = BatchNormalization(momentum=0.99)(pool3)
conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization(momentum=0.99)(conv4)
conv4 = Conv2D(256, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = Dropout(0.02)(conv4)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
 
conv5 = BatchNormalization(momentum=0.99)(pool4)
conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = BatchNormalization(momentum=0.99)(conv5)
conv5 = Conv2D(512, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
# conv5 = Conv2D(35, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
# drop4 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(pool3) # 2
pool5 = AveragePooling2D(pool_size=(2, 2))(pool4) # 1
 
conv6 = BatchNormalization(momentum=0.99)(pool5)
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
 
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = (UpSampling2D(size=(2, 2))(conv7)) # 2
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
merge7 = concatenate([pool4, conv7], axis=3)
 
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
up8 = (UpSampling2D(size=(2, 2))(conv8)) # 4
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
merge8 = concatenate([pool3, conv8], axis=3)
 
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
up9 = (UpSampling2D(size=(2, 2))(conv9)) # 8
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9)
merge9 = concatenate([pool2, conv9], axis=3)
 
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
up10 = (UpSampling2D(size=(2, 2))(conv10)) # 16
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up10)
 
conv11 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10)
up11 = (UpSampling2D(size=(2, 2))(conv11)) # 32
conv11 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up11)
 
# conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
 
model = Model(input=inputs, output=conv12)
print(model.summary())
model.compile(optimizer=Adam(lr=1e-3), loss='mse', metrics=['accuracy'])
 
history = model.fit_generator(generator(pathX, pathY,BATCH_SIZE),
        steps_per_epoch=600, nb_epoch=EPOCH)
end_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
 #save your training model
model.save(r'V1_828.h5')
 
#save your loss data
mse = np.array((history.history['loss']))
np.save(r'V1_828.npy', mse)

(2)测试模型

from keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
 
model = load_model('V1_828.h5')
test_images_path = 'I:\\Pascal VOC Dataset\\test\\test_images\\'
test_gt_path = 'I:\\Pascal VOC Dataset\\test\\SegmentationObject\\'
pre_path = 'I:\\Pascal VOC Dataset\\test\\pre\\'
 
X = []
for info in os.listdir(test_images_path):
 A = cv2.imread(test_images_path + info)
 X.append(A)
 # i += 1
X = np.array(X)
print(X.shape)
Y = model.predict(X)
 
groudtruth = []
for info in os.listdir(test_gt_path):
 A = cv2.imread(test_gt_path + info)
 groudtruth.append(A)
groudtruth = np.array(groudtruth)
 
i = 0
for info in os.listdir(test_images_path):
 cv2.imwrite(pre_path + info,Y[i])
 i += 1
 
a = range(10)
n = np.random.choice(a)
cv2.imwrite('prediction.png',Y[n])
cv2.imwrite('groudtruth.png',groudtruth[n])
fig, axs = plt.subplots(1, 3)
# cnt = 1
# for j in range(1):
axs[0].imshow(np.abs(X[n]))
axs[0].axis('off')
axs[1].imshow(np.abs(Y[n]))
axs[1].axis('off')
axs[2].imshow(np.abs(groudtruth[n]))
axs[2].axis('off')
 # cnt += 1
fig.savefig("imagestest.png")
plt.close()

3 效果展示

说明:从左到右依次是预测图像,真实图像,标注图像。可以看出,对于部分数据的分割效果还有待改进,主要原因还是数据集相对复杂,模型难于找到其中的规律。

Keras:Unet网络实现多类语义分割方式

以上这篇Keras:Unet网络实现多类语义分割方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 字典(dict)遍历的四种方法性能测试报告
Jun 25 Python
Python selenium如何设置等待时间
Sep 15 Python
python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
Mar 12 Python
用python结合jieba和wordcloud实现词云效果
Sep 05 Python
Python探索之创建二叉树
Oct 25 Python
python做反被爬保护的方法
Jul 01 Python
解决json中ensure_ascii=False的问题
Apr 03 Python
使用python采集Excel表中某一格数据
May 14 Python
重写django的model下的objects模型管理器方式
May 15 Python
详解Pycharm与anaconda安装配置指南
Aug 25 Python
pandas使用函数批量处理数据(map、apply、applymap)
Nov 27 Python
pycharm 复制代码出现空格的解决方式
Jan 15 Python
Pycharm中配置远程Docker运行环境的教程图解
Jun 11 #Python
Keras 快速解决OOM超内存的问题
Jun 11 #Python
python3.6.8 + pycharm + PyQt5 环境搭建的图文教程
Jun 11 #Python
使用keras实现孪生网络中的权值共享教程
Jun 11 #Python
查看keras各种网络结构各层的名字方式
Jun 11 #Python
python datetime时间格式的相互转换问题
Jun 11 #Python
完美解决keras保存好的model不能成功加载问题
Jun 11 #Python
You might like
php示例详解Constructor Prototype Pattern 原型模式
2015/10/15 PHP
Zend Framework教程之资源(Resources)用法实例详解
2016/03/14 PHP
基于JQuery的密码强度验证代码
2010/03/01 Javascript
JavaScript中的关键字"VAR"使用详解 分享
2013/07/31 Javascript
JS 实现导航栏悬停效果(续2)
2013/09/24 Javascript
jquery parent和parents的区别分析
2013/10/02 Javascript
Jquery实现图片放大镜效果的思路及代码(自写)
2013/10/18 Javascript
Javascript连接多个数组不用concat来解决
2014/03/24 Javascript
vue2中filter()的实现代码
2017/07/09 Javascript
JS如何设置元素样式的方法示例
2017/08/28 Javascript
NodeJs form-data格式传输文件的方法
2017/12/13 NodeJs
Element-ui DatePicker显示周数的方法示例
2019/07/19 Javascript
pydev使用wxpython找不到路径的解决方法
2013/02/10 Python
python算法学习之基数排序实例
2013/12/18 Python
c++生成dll使用python调用dll的方法
2014/01/20 Python
《Python之禅》中对于Python编程过程中的一些建议
2015/04/03 Python
简单讲解Python中的数字类型及基本的数学计算
2016/03/11 Python
python实现给微信公众号发送消息的方法
2017/06/30 Python
浅谈python迭代器
2017/11/08 Python
Python设计模式之工厂方法模式实例详解
2019/01/18 Python
Python生成指定数量的优惠码实操内容
2019/06/18 Python
通过python扫描二维码/条形码并打印数据
2019/11/14 Python
Python os库常用操作代码汇总
2020/11/03 Python
利用CSS3动画实现圆圈由小变大向外扩散的效果实例
2018/09/10 HTML / CSS
Html5大文件断点续传实现方法
2015/12/05 HTML / CSS
小米乌克兰网上商店:Xiaomi.UA
2019/10/29 全球购物
医学毕业生自荐信
2013/10/11 职场文书
授权委托书范本
2014/04/03 职场文书
幼儿园优秀班主任事迹材料
2014/05/14 职场文书
运动会闭幕词
2015/01/28 职场文书
高二语文教学反思
2016/02/16 职场文书
实习员工转正的评语汇总,以备不时之需
2019/12/17 职场文书
PHP 技巧 * SVG 保存为图片(分享图生成)
2021/04/02 PHP
matlab xlabel位置的设置方式
2021/05/21 Python
MySQL窗口函数的具体使用
2021/11/17 MySQL
Linux中如何安装并部署Redis
2022/04/18 Servers