浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估


Posted in Python onOctober 17, 2019

使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估。

效果如下(演示视频):

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

 由于这是通过比较面部色素的变化评估脉搏所以光线、人体移动、不同角度、不同电脑摄像头等因素均会影响评估效果,实验原理是面部色素对比,识别效果存在一定误差,各位小伙伴且当娱乐,代码如下:

import cv2
import numpy as np
import dlib
import time
from scipy import signal
# Constants
WINDOW_TITLE = 'Pulse Observer'
BUFFER_MAX_SIZE = 500  # Number of recent ROI average values to store
MAX_VALUES_TO_GRAPH = 50 # Number of recent ROI average values to show in the pulse graph
MIN_HZ = 0.83  # 50 BPM - minimum allowed heart rate
MAX_HZ = 3.33  # 200 BPM - maximum allowed heart rate
MIN_FRAMES = 100 # Minimum number of frames required before heart rate is computed. Higher values are slower, but
     # more accurate.
DEBUG_MODE = False
# Creates the specified Butterworth filter and applies it.
def butterworth_filter(data, low, high, sample_rate, order=5):
 nyquist_rate = sample_rate * 0.5
 low /= nyquist_rate
 high /= nyquist_rate
 b, a = signal.butter(order, [low, high], btype='band')
 return signal.lfilter(b, a, data)
# Gets the region of interest for the forehead.
def get_forehead_roi(face_points):
 # Store the points in a Numpy array so we can easily get the min and max for x and y via slicing
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 min_x = int(points[21, 0])
 min_y = int(min(points[21, 1], points[22, 1]))
 max_x = int(points[22, 0])
 max_y = int(max(points[21, 1], points[22, 1]))
 left = min_x
 right = max_x
 top = min_y - (max_x - min_x)
 bottom = max_y * 0.98
 return int(left), int(right), int(top), int(bottom)
# Gets the region of interest for the nose.
def get_nose_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Nose and cheeks
 min_x = int(points[36, 0])
 min_y = int(points[28, 1])
 max_x = int(points[45, 0])
 max_y = int(points[33, 1])
 left = min_x
 right = max_x
 top = min_y + (min_y * 0.02)
 bottom = max_y + (max_y * 0.02)
 return int(left), int(right), int(top), int(bottom)
# Gets region of interest that includes forehead, eyes, and nose.
# Note: Combination of forehead and nose performs better. This is probably because this ROI includes eyes,
# and eye blinking adds noise.
def get_full_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Only keep the points that correspond to the internal features of the face (e.g. mouth, nose, eyes, brows).
 # The points outlining the jaw are discarded.
 min_x = int(np.min(points[17:47, 0]))
 min_y = int(np.min(points[17:47, 1]))
 max_x = int(np.max(points[17:47, 0]))
 max_y = int(np.max(points[17:47, 1]))
 center_x = min_x + (max_x - min_x) / 2
 left = min_x + int((center_x - min_x) * 0.15)
 right = max_x - int((max_x - center_x) * 0.15)
 top = int(min_y * 0.88)
 bottom = max_y
 return int(left), int(right), int(top), int(bottom)
def sliding_window_demean(signal_values, num_windows):
 window_size = int(round(len(signal_values) / num_windows))
 demeaned = np.zeros(signal_values.shape)
 for i in range(0, len(signal_values), window_size):
  if i + window_size > len(signal_values):
   window_size = len(signal_values) - i
  curr_slice = signal_values[i: i + window_size]
  if DEBUG_MODE and curr_slice.size == 0:
   print ('Empty Slice: size={0}, i={1}, window_size={2}'.format(signal_values.size, i, window_size))
   print (curr_slice)
  demeaned[i:i + window_size] = curr_slice - np.mean(curr_slice)
 return demeaned
# Averages the green values for two arrays of pixels
def get_avg(roi1, roi2):
 roi1_green = roi1[:, :, 1]
 roi2_green = roi2[:, :, 1]
 avg = (np.mean(roi1_green) + np.mean(roi2_green)) / 2.0
 return avg
# Returns maximum absolute value from a list
def get_max_abs(lst):
 return max(max(lst), -min(lst))
# Draws the heart rate graph in the GUI window.
def draw_graph(signal_values, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 scale_factor_x = float(graph_width) / MAX_VALUES_TO_GRAPH
 # Automatically rescale vertically based on the value with largest absolute value
 max_abs = get_max_abs(signal_values)
 scale_factor_y = (float(graph_height) / 2.0) / max_abs
 midpoint_y = graph_height / 2
 for i in range(0, len(signal_values) - 1):
  curr_x = int(i * scale_factor_x)
  curr_y = int(midpoint_y + signal_values[i] * scale_factor_y)
  next_x = int((i + 1) * scale_factor_x)
  next_y = int(midpoint_y + signal_values[i + 1] * scale_factor_y)
  cv2.line(graph, (curr_x, curr_y), (next_x, next_y), color=(0, 255, 0), thickness=1)
 return graph
# Draws the heart rate text (BPM) in the GUI window.
def draw_bpm(bpm_str, bpm_width, bpm_height):
 bpm_display = np.zeros((bpm_height, bpm_width, 3), np.uint8)
 bpm_text_size, bpm_text_base = cv2.getTextSize(bpm_str, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7,
             thickness=2)
 bpm_text_x = int((bpm_width - bpm_text_size[0]) / 2)
 bpm_text_y = int(bpm_height / 2 + bpm_text_base)
 cv2.putText(bpm_display, bpm_str, (bpm_text_x, bpm_text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX,
    fontScale=2.7, color=(0, 255, 0), thickness=2)
 bpm_label_size, bpm_label_base = cv2.getTextSize('BPM', fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6,
              thickness=1)
 bpm_label_x = int((bpm_width - bpm_label_size[0]) / 2)
 bpm_label_y = int(bpm_height - bpm_label_size[1] * 2)
 cv2.putText(bpm_display, 'BPM', (bpm_label_x, bpm_label_y),
    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, color=(0, 255, 0), thickness=1)
 return bpm_display
# Draws the current frames per second in the GUI window.
def draw_fps(frame, fps):
 cv2.rectangle(frame, (0, 0), (100, 30), color=(0, 0, 0), thickness=-1)
 cv2.putText(frame, 'FPS: ' + str(round(fps, 2)), (5, 20), fontFace=cv2.FONT_HERSHEY_PLAIN,
    fontScale=1, color=(0, 255, 0))
 return frame
# Draw text in the graph area
def draw_graph_text(text, color, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 text_size, text_base = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, thickness=1)
 text_x = int((graph_width - text_size[0]) / 2)
 text_y = int((graph_height / 2 + text_base))
 cv2.putText(graph, text, (text_x, text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=color,
    thickness=1)
 return graph
# Calculate the pulse in beats per minute (BPM)
def compute_bpm(filtered_values, fps, buffer_size, last_bpm):
 # Compute FFT
 fft = np.abs(np.fft.rfft(filtered_values))
 # Generate list of frequencies that correspond to the FFT values
 freqs = fps / buffer_size * np.arange(buffer_size / 2 + 1)
 # Filter out any peaks in the FFT that are not within our range of [MIN_HZ, MAX_HZ]
 # because they correspond to impossible BPM values.
 while True:
  max_idx = fft.argmax()
  bps = freqs[max_idx]
  if bps < MIN_HZ or bps > MAX_HZ:
   if DEBUG_MODE:
    print ('BPM of {0} was discarded.'.format(bps * 60.0))
   fft[max_idx] = 0
  else:
   bpm = bps * 60.0
   break
 # It's impossible for the heart rate to change more than 10% between samples,
 # so use a weighted average to smooth the BPM with the last BPM.
 if last_bpm > 0:
  bpm = (last_bpm * 0.9) + (bpm * 0.1)
 return bpm
def filter_signal_data(values, fps):
 # Ensure that array doesn't have infinite or NaN values
 values = np.array(values)
 np.nan_to_num(values, copy=False)
 # Smooth the signal by detrending and demeaning
 detrended = signal.detrend(values, type='linear')
 demeaned = sliding_window_demean(detrended, 15)
 # Filter signal with Butterworth bandpass filter
 filtered = butterworth_filter(demeaned, MIN_HZ, MAX_HZ, fps, order=5)
 return filtered
# Get the average value for the regions of interest. Will also draw a green rectangle around
# the regions of interest, if requested.
def get_roi_avg(frame, view, face_points, draw_rect=True):
 # Get the regions of interest.
 fh_left, fh_right, fh_top, fh_bottom = get_forehead_roi(face_points)
 nose_left, nose_right, nose_top, nose_bottom = get_nose_roi(face_points)
 # Draw green rectangles around our regions of interest (ROI)
 if draw_rect:
  cv2.rectangle(view, (fh_left, fh_top), (fh_right, fh_bottom), color=(0, 255, 0), thickness=2)
  cv2.rectangle(view, (nose_left, nose_top), (nose_right, nose_bottom), color=(0, 255, 0), thickness=2)
 # Slice out the regions of interest (ROI) and average them
 fh_roi = frame[fh_top:fh_bottom, fh_left:fh_right]
 nose_roi = frame[nose_top:nose_bottom, nose_left:nose_right]
 return get_avg(fh_roi, nose_roi)
# Main function.
def run_pulse_observer(detector, predictor, webcam, window):
 roi_avg_values = []
 graph_values = []
 times = []
 last_bpm = 0
 graph_height = 200
 graph_width = 0
 bpm_display_width = 0
 # cv2.getWindowProperty() returns -1 when window is closed by user.
 while cv2.getWindowProperty(window, 0) == 0:
  ret_val, frame = webcam.read()
  # ret_val == False if unable to read from webcam
  if not ret_val:
   print ("ERROR: Unable to read from webcam. Was the webcam disconnected? Exiting.")
   shut_down(webcam)
  # Make copy of frame before we draw on it. We'll display the copy in the GUI.
  # The original frame will be used to compute heart rate.
  view = np.array(frame)
  # Heart rate graph gets 75% of window width. BPM gets 25%.
  if graph_width == 0:
   graph_width = int(view.shape[1] * 0.75)
   if DEBUG_MODE:
    print ('Graph width = {0}'.format(graph_width))
  if bpm_display_width == 0:
   bpm_display_width = view.shape[1] - graph_width
  # Detect face using dlib
  faces = detector(frame, 0)
  if len(faces) == 1:
   face_points = predictor(frame, faces[0])
   roi_avg = get_roi_avg(frame, view, face_points, draw_rect=True)
   roi_avg_values.append(roi_avg)
   times.append(time.time())
   # Buffer is full, so pop the value off the top to get rid of it
   if len(times) > BUFFER_MAX_SIZE:
    roi_avg_values.pop(0)
    times.pop(0)
   curr_buffer_size = len(times)
   # Don't try to compute pulse until we have at least the min. number of frames
   if curr_buffer_size > MIN_FRAMES:
    # Compute relevant times
    time_elapsed = times[-1] - times[0]
    fps = curr_buffer_size / time_elapsed # frames per second
    # Clean up the signal data
    filtered = filter_signal_data(roi_avg_values, fps)
    graph_values.append(filtered[-1])
    if len(graph_values) > MAX_VALUES_TO_GRAPH:
     graph_values.pop(0)
    # Draw the pulse graph
    graph = draw_graph(graph_values, graph_width, graph_height)
    # Compute and display the BPM
    bpm = compute_bpm(filtered, fps, curr_buffer_size, last_bpm)
    bpm_display = draw_bpm(str(int(round(bpm))), bpm_display_width, graph_height)
    last_bpm = bpm
    # Display the FPS
    if DEBUG_MODE:
     view = draw_fps(view, fps)
   else:
    # If there's not enough data to compute HR, show an empty graph with loading text and
    # the BPM placeholder
    pct = int(round(float(curr_buffer_size) / MIN_FRAMES * 100.0))
    loading_text = 'Computing pulse: ' + str(pct) + '%'
    graph = draw_graph_text(loading_text, (0, 255, 0), graph_width, graph_height)
    bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  else:
   # No faces detected, so we must clear the lists of values and timestamps. Otherwise there will be a gap
   # in timestamps when a face is detected again.
   del roi_avg_values[:]
   del times[:]
   graph = draw_graph_text('No face detected', (0, 0, 255), graph_width, graph_height)
   bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  graph = np.hstack((graph, bpm_display))
  view = np.vstack((view, graph))
  cv2.imshow(window, view)
  key = cv2.waitKey(1)
  # Exit if user presses the escape key
  if key == 27:
   shut_down(webcam)
# Clean up
def shut_down(webcam):
 webcam.release()
 cv2.destroyAllWindows()
 exit(0)
def main():
 detector = dlib.get_frontal_face_detector()
 # Predictor pre-trained model can be downloaded from:
 # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
 try:
  predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
 except RuntimeError as e:
  print ('ERROR: \'shape_predictor_68_face_landmarks.dat\' was not found in current directory. ' \
    'Download it from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2')
  return
 webcam = cv2.VideoCapture(0)
 if not webcam.isOpened():
  print ('ERROR: Unable to open webcam. Verify that webcam is connected and try again. Exiting.')
  webcam.release()
  return
 cv2.namedWindow(WINDOW_TITLE)
 run_pulse_observer(detector, predictor, webcam, WINDOW_TITLE)
 # run_pulse_observer() returns when the user has closed the window. Time to shut down.
 shut_down(webcam)
if __name__ == '__main__':
 main()

总结

以上所述是小编给大家介绍的浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python中使用装饰器时需要注意的一些问题
May 11 Python
django批量导入xml数据
Oct 16 Python
python 出现SyntaxError: non-keyword arg after keyword arg错误解决办法
Feb 14 Python
python2.7实现FTP文件下载功能
Apr 15 Python
PyQt5每天必学之关闭窗口
Apr 19 Python
用python处理MS Word的实例讲解
May 08 Python
使用python爬虫获取黄金价格的核心代码
Jun 13 Python
numpy 对矩阵中Nan的处理:采用平均值的方法
Oct 30 Python
Pycharm 实现下一个文件引用另外一个文件的方法
Jan 17 Python
python创建与遍历List二维列表的方法
Aug 16 Python
python如何输出反斜杠
Jun 18 Python
python可以用哪些数据库
Jun 22 Python
Python 3.8正式发布重要新功能一览
Oct 17 #Python
Python 装饰器@,对函数进行功能扩展操作示例【开闭原则】
Oct 17 #Python
python实现复制文件到指定目录
Oct 16 #Python
如何解决django-celery启动后迅速关闭
Oct 16 #Python
Python发送邮件的实例代码讲解
Oct 16 #Python
python运用sklearn实现KNN分类算法
Oct 16 #Python
python sklearn常用分类算法模型的调用
Oct 16 #Python
You might like
php实现分页显示
2015/11/03 PHP
基于php实现七牛抓取远程图片
2015/12/01 PHP
PHP将MySQL的查询结果转换为数组并用where拼接的示例
2016/05/13 PHP
JavaScript静态的动态
2006/09/18 Javascript
javascript 实现父窗口引用弹出窗口的值的脚本
2007/08/07 Javascript
javascript中的注释使用与注意事项小结
2011/09/20 Javascript
js整数字符串转换为金额类型数据(示例代码)
2013/12/26 Javascript
js 判断控件获得焦点的示例代码
2014/03/04 Javascript
jQuery的图片滑块焦点图插件整理推荐
2014/12/07 Javascript
js获取时间并实现字符串和时间戳之间的转换
2015/01/05 Javascript
jfinal与bootstrap的登录跳转实战演习
2015/09/22 Javascript
JS实现网页上随滚动条滚动的层效果代码
2015/11/04 Javascript
js实现开启密码大写提示
2016/12/21 Javascript
SVG动画vivus.js库使用小结(实例代码)
2017/09/14 Javascript
JS实现json对象数组按对象属性排序操作示例
2018/05/18 Javascript
深入浅析Vue中的 computed 和 watch
2018/06/06 Javascript
Vue 实时监听窗口变化 windowresize的两种方法
2018/11/06 Javascript
记录vue项目中遇到的一点小问题
2019/05/14 Javascript
Layui实现带查询条件的分页
2019/07/27 Javascript
vue中使用百度脑图kityminder-core二次开发的实现
2019/09/26 Javascript
python 画三维图像 曲面图和散点图的示例
2018/12/29 Python
django模板加载静态文件的方法步骤
2019/03/01 Python
python实现京东订单推送到测试环境,提供便利操作示例
2019/08/09 Python
如何搭建pytorch环境的方法步骤
2020/05/06 Python
澳洲的服装老品牌:SABA
2018/02/06 全球购物
意大利体育用品和运动服网上商店:Maxi Sport
2019/09/14 全球购物
瑞士最大的图书贸易公司:Orell Füssli
2019/12/28 全球购物
在C++ 程序中调用被C 编译器编译后的函数,为什么要加extern "C"
2014/08/09 面试题
如何执行一个shell程序
2012/11/23 面试题
大学生的网上创业计划书
2013/12/31 职场文书
预备党员党课思想汇报
2014/01/13 职场文书
大学军训感言1000字
2014/02/25 职场文书
新郎结婚保证书
2015/02/26 职场文书
金榜题名主持词
2015/07/02 职场文书
个人合作协议范本
2015/08/06 职场文书
Nginx开启Brotli压缩算法实现过程详解
2021/03/31 Servers