浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估


Posted in Python onOctober 17, 2019

使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估。

效果如下(演示视频):

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

 由于这是通过比较面部色素的变化评估脉搏所以光线、人体移动、不同角度、不同电脑摄像头等因素均会影响评估效果,实验原理是面部色素对比,识别效果存在一定误差,各位小伙伴且当娱乐,代码如下:

import cv2
import numpy as np
import dlib
import time
from scipy import signal
# Constants
WINDOW_TITLE = 'Pulse Observer'
BUFFER_MAX_SIZE = 500  # Number of recent ROI average values to store
MAX_VALUES_TO_GRAPH = 50 # Number of recent ROI average values to show in the pulse graph
MIN_HZ = 0.83  # 50 BPM - minimum allowed heart rate
MAX_HZ = 3.33  # 200 BPM - maximum allowed heart rate
MIN_FRAMES = 100 # Minimum number of frames required before heart rate is computed. Higher values are slower, but
     # more accurate.
DEBUG_MODE = False
# Creates the specified Butterworth filter and applies it.
def butterworth_filter(data, low, high, sample_rate, order=5):
 nyquist_rate = sample_rate * 0.5
 low /= nyquist_rate
 high /= nyquist_rate
 b, a = signal.butter(order, [low, high], btype='band')
 return signal.lfilter(b, a, data)
# Gets the region of interest for the forehead.
def get_forehead_roi(face_points):
 # Store the points in a Numpy array so we can easily get the min and max for x and y via slicing
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 min_x = int(points[21, 0])
 min_y = int(min(points[21, 1], points[22, 1]))
 max_x = int(points[22, 0])
 max_y = int(max(points[21, 1], points[22, 1]))
 left = min_x
 right = max_x
 top = min_y - (max_x - min_x)
 bottom = max_y * 0.98
 return int(left), int(right), int(top), int(bottom)
# Gets the region of interest for the nose.
def get_nose_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Nose and cheeks
 min_x = int(points[36, 0])
 min_y = int(points[28, 1])
 max_x = int(points[45, 0])
 max_y = int(points[33, 1])
 left = min_x
 right = max_x
 top = min_y + (min_y * 0.02)
 bottom = max_y + (max_y * 0.02)
 return int(left), int(right), int(top), int(bottom)
# Gets region of interest that includes forehead, eyes, and nose.
# Note: Combination of forehead and nose performs better. This is probably because this ROI includes eyes,
# and eye blinking adds noise.
def get_full_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Only keep the points that correspond to the internal features of the face (e.g. mouth, nose, eyes, brows).
 # The points outlining the jaw are discarded.
 min_x = int(np.min(points[17:47, 0]))
 min_y = int(np.min(points[17:47, 1]))
 max_x = int(np.max(points[17:47, 0]))
 max_y = int(np.max(points[17:47, 1]))
 center_x = min_x + (max_x - min_x) / 2
 left = min_x + int((center_x - min_x) * 0.15)
 right = max_x - int((max_x - center_x) * 0.15)
 top = int(min_y * 0.88)
 bottom = max_y
 return int(left), int(right), int(top), int(bottom)
def sliding_window_demean(signal_values, num_windows):
 window_size = int(round(len(signal_values) / num_windows))
 demeaned = np.zeros(signal_values.shape)
 for i in range(0, len(signal_values), window_size):
  if i + window_size > len(signal_values):
   window_size = len(signal_values) - i
  curr_slice = signal_values[i: i + window_size]
  if DEBUG_MODE and curr_slice.size == 0:
   print ('Empty Slice: size={0}, i={1}, window_size={2}'.format(signal_values.size, i, window_size))
   print (curr_slice)
  demeaned[i:i + window_size] = curr_slice - np.mean(curr_slice)
 return demeaned
# Averages the green values for two arrays of pixels
def get_avg(roi1, roi2):
 roi1_green = roi1[:, :, 1]
 roi2_green = roi2[:, :, 1]
 avg = (np.mean(roi1_green) + np.mean(roi2_green)) / 2.0
 return avg
# Returns maximum absolute value from a list
def get_max_abs(lst):
 return max(max(lst), -min(lst))
# Draws the heart rate graph in the GUI window.
def draw_graph(signal_values, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 scale_factor_x = float(graph_width) / MAX_VALUES_TO_GRAPH
 # Automatically rescale vertically based on the value with largest absolute value
 max_abs = get_max_abs(signal_values)
 scale_factor_y = (float(graph_height) / 2.0) / max_abs
 midpoint_y = graph_height / 2
 for i in range(0, len(signal_values) - 1):
  curr_x = int(i * scale_factor_x)
  curr_y = int(midpoint_y + signal_values[i] * scale_factor_y)
  next_x = int((i + 1) * scale_factor_x)
  next_y = int(midpoint_y + signal_values[i + 1] * scale_factor_y)
  cv2.line(graph, (curr_x, curr_y), (next_x, next_y), color=(0, 255, 0), thickness=1)
 return graph
# Draws the heart rate text (BPM) in the GUI window.
def draw_bpm(bpm_str, bpm_width, bpm_height):
 bpm_display = np.zeros((bpm_height, bpm_width, 3), np.uint8)
 bpm_text_size, bpm_text_base = cv2.getTextSize(bpm_str, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7,
             thickness=2)
 bpm_text_x = int((bpm_width - bpm_text_size[0]) / 2)
 bpm_text_y = int(bpm_height / 2 + bpm_text_base)
 cv2.putText(bpm_display, bpm_str, (bpm_text_x, bpm_text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX,
    fontScale=2.7, color=(0, 255, 0), thickness=2)
 bpm_label_size, bpm_label_base = cv2.getTextSize('BPM', fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6,
              thickness=1)
 bpm_label_x = int((bpm_width - bpm_label_size[0]) / 2)
 bpm_label_y = int(bpm_height - bpm_label_size[1] * 2)
 cv2.putText(bpm_display, 'BPM', (bpm_label_x, bpm_label_y),
    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, color=(0, 255, 0), thickness=1)
 return bpm_display
# Draws the current frames per second in the GUI window.
def draw_fps(frame, fps):
 cv2.rectangle(frame, (0, 0), (100, 30), color=(0, 0, 0), thickness=-1)
 cv2.putText(frame, 'FPS: ' + str(round(fps, 2)), (5, 20), fontFace=cv2.FONT_HERSHEY_PLAIN,
    fontScale=1, color=(0, 255, 0))
 return frame
# Draw text in the graph area
def draw_graph_text(text, color, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 text_size, text_base = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, thickness=1)
 text_x = int((graph_width - text_size[0]) / 2)
 text_y = int((graph_height / 2 + text_base))
 cv2.putText(graph, text, (text_x, text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=color,
    thickness=1)
 return graph
# Calculate the pulse in beats per minute (BPM)
def compute_bpm(filtered_values, fps, buffer_size, last_bpm):
 # Compute FFT
 fft = np.abs(np.fft.rfft(filtered_values))
 # Generate list of frequencies that correspond to the FFT values
 freqs = fps / buffer_size * np.arange(buffer_size / 2 + 1)
 # Filter out any peaks in the FFT that are not within our range of [MIN_HZ, MAX_HZ]
 # because they correspond to impossible BPM values.
 while True:
  max_idx = fft.argmax()
  bps = freqs[max_idx]
  if bps < MIN_HZ or bps > MAX_HZ:
   if DEBUG_MODE:
    print ('BPM of {0} was discarded.'.format(bps * 60.0))
   fft[max_idx] = 0
  else:
   bpm = bps * 60.0
   break
 # It's impossible for the heart rate to change more than 10% between samples,
 # so use a weighted average to smooth the BPM with the last BPM.
 if last_bpm > 0:
  bpm = (last_bpm * 0.9) + (bpm * 0.1)
 return bpm
def filter_signal_data(values, fps):
 # Ensure that array doesn't have infinite or NaN values
 values = np.array(values)
 np.nan_to_num(values, copy=False)
 # Smooth the signal by detrending and demeaning
 detrended = signal.detrend(values, type='linear')
 demeaned = sliding_window_demean(detrended, 15)
 # Filter signal with Butterworth bandpass filter
 filtered = butterworth_filter(demeaned, MIN_HZ, MAX_HZ, fps, order=5)
 return filtered
# Get the average value for the regions of interest. Will also draw a green rectangle around
# the regions of interest, if requested.
def get_roi_avg(frame, view, face_points, draw_rect=True):
 # Get the regions of interest.
 fh_left, fh_right, fh_top, fh_bottom = get_forehead_roi(face_points)
 nose_left, nose_right, nose_top, nose_bottom = get_nose_roi(face_points)
 # Draw green rectangles around our regions of interest (ROI)
 if draw_rect:
  cv2.rectangle(view, (fh_left, fh_top), (fh_right, fh_bottom), color=(0, 255, 0), thickness=2)
  cv2.rectangle(view, (nose_left, nose_top), (nose_right, nose_bottom), color=(0, 255, 0), thickness=2)
 # Slice out the regions of interest (ROI) and average them
 fh_roi = frame[fh_top:fh_bottom, fh_left:fh_right]
 nose_roi = frame[nose_top:nose_bottom, nose_left:nose_right]
 return get_avg(fh_roi, nose_roi)
# Main function.
def run_pulse_observer(detector, predictor, webcam, window):
 roi_avg_values = []
 graph_values = []
 times = []
 last_bpm = 0
 graph_height = 200
 graph_width = 0
 bpm_display_width = 0
 # cv2.getWindowProperty() returns -1 when window is closed by user.
 while cv2.getWindowProperty(window, 0) == 0:
  ret_val, frame = webcam.read()
  # ret_val == False if unable to read from webcam
  if not ret_val:
   print ("ERROR: Unable to read from webcam. Was the webcam disconnected? Exiting.")
   shut_down(webcam)
  # Make copy of frame before we draw on it. We'll display the copy in the GUI.
  # The original frame will be used to compute heart rate.
  view = np.array(frame)
  # Heart rate graph gets 75% of window width. BPM gets 25%.
  if graph_width == 0:
   graph_width = int(view.shape[1] * 0.75)
   if DEBUG_MODE:
    print ('Graph width = {0}'.format(graph_width))
  if bpm_display_width == 0:
   bpm_display_width = view.shape[1] - graph_width
  # Detect face using dlib
  faces = detector(frame, 0)
  if len(faces) == 1:
   face_points = predictor(frame, faces[0])
   roi_avg = get_roi_avg(frame, view, face_points, draw_rect=True)
   roi_avg_values.append(roi_avg)
   times.append(time.time())
   # Buffer is full, so pop the value off the top to get rid of it
   if len(times) > BUFFER_MAX_SIZE:
    roi_avg_values.pop(0)
    times.pop(0)
   curr_buffer_size = len(times)
   # Don't try to compute pulse until we have at least the min. number of frames
   if curr_buffer_size > MIN_FRAMES:
    # Compute relevant times
    time_elapsed = times[-1] - times[0]
    fps = curr_buffer_size / time_elapsed # frames per second
    # Clean up the signal data
    filtered = filter_signal_data(roi_avg_values, fps)
    graph_values.append(filtered[-1])
    if len(graph_values) > MAX_VALUES_TO_GRAPH:
     graph_values.pop(0)
    # Draw the pulse graph
    graph = draw_graph(graph_values, graph_width, graph_height)
    # Compute and display the BPM
    bpm = compute_bpm(filtered, fps, curr_buffer_size, last_bpm)
    bpm_display = draw_bpm(str(int(round(bpm))), bpm_display_width, graph_height)
    last_bpm = bpm
    # Display the FPS
    if DEBUG_MODE:
     view = draw_fps(view, fps)
   else:
    # If there's not enough data to compute HR, show an empty graph with loading text and
    # the BPM placeholder
    pct = int(round(float(curr_buffer_size) / MIN_FRAMES * 100.0))
    loading_text = 'Computing pulse: ' + str(pct) + '%'
    graph = draw_graph_text(loading_text, (0, 255, 0), graph_width, graph_height)
    bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  else:
   # No faces detected, so we must clear the lists of values and timestamps. Otherwise there will be a gap
   # in timestamps when a face is detected again.
   del roi_avg_values[:]
   del times[:]
   graph = draw_graph_text('No face detected', (0, 0, 255), graph_width, graph_height)
   bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  graph = np.hstack((graph, bpm_display))
  view = np.vstack((view, graph))
  cv2.imshow(window, view)
  key = cv2.waitKey(1)
  # Exit if user presses the escape key
  if key == 27:
   shut_down(webcam)
# Clean up
def shut_down(webcam):
 webcam.release()
 cv2.destroyAllWindows()
 exit(0)
def main():
 detector = dlib.get_frontal_face_detector()
 # Predictor pre-trained model can be downloaded from:
 # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
 try:
  predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
 except RuntimeError as e:
  print ('ERROR: \'shape_predictor_68_face_landmarks.dat\' was not found in current directory. ' \
    'Download it from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2')
  return
 webcam = cv2.VideoCapture(0)
 if not webcam.isOpened():
  print ('ERROR: Unable to open webcam. Verify that webcam is connected and try again. Exiting.')
  webcam.release()
  return
 cv2.namedWindow(WINDOW_TITLE)
 run_pulse_observer(detector, predictor, webcam, WINDOW_TITLE)
 # run_pulse_observer() returns when the user has closed the window. Time to shut down.
 shut_down(webcam)
if __name__ == '__main__':
 main()

总结

以上所述是小编给大家介绍的浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python自动化测试之从命令行运行测试用例with verbosity
Sep 28 Python
Python中用pycurl监控http响应时间脚本分享
Feb 02 Python
python实现自动更换ip的方法
May 05 Python
python获得一个月有多少天的方法
Jun 04 Python
Python实现的多项式拟合功能示例【基于matplotlib】
May 15 Python
Tensorflow使用支持向量机拟合线性回归
Sep 07 Python
Python图片的横坐标汉字实例
Dec 04 Python
在pytorch中对非叶节点的变量计算梯度实例
Jan 10 Python
Python requests模块安装及使用教程图解
Jun 30 Python
python中entry用法讲解
Dec 04 Python
Python Pandas知识点之缺失值处理详解
May 11 Python
Django drf请求模块源码解析
Jun 08 Python
Python 3.8正式发布重要新功能一览
Oct 17 #Python
Python 装饰器@,对函数进行功能扩展操作示例【开闭原则】
Oct 17 #Python
python实现复制文件到指定目录
Oct 16 #Python
如何解决django-celery启动后迅速关闭
Oct 16 #Python
Python发送邮件的实例代码讲解
Oct 16 #Python
python运用sklearn实现KNN分类算法
Oct 16 #Python
python sklearn常用分类算法模型的调用
Oct 16 #Python
You might like
php 对输入信息的进行安全过滤的函数代码
2012/06/29 PHP
php下Memcached入门实例解析
2015/01/05 PHP
PHP+Mysql+jQuery中国地图区域数据统计实例讲解
2015/10/10 PHP
我整理的PHP 7.0主要新特性
2016/01/07 PHP
PHP fprintf()函数用法讲解
2019/02/16 PHP
javascript使用中为什么10..toString()正常而10.toString()出错呢
2013/01/11 Javascript
调试JavaScript中正则表达式中遇到的问题
2015/01/27 Javascript
javascript解三阶幻方(九宫格)
2015/04/22 Javascript
node文件上传功能简易实现代码
2017/06/16 Javascript
详解.vue文件解析的实现
2018/06/11 Javascript
JavaScript基础之静态方法和实例方法分析
2018/12/26 Javascript
vue canvas绘制矩形并解决由clearRec带来的闪屏问题
2019/09/02 Javascript
js prototype深入理解及应用实例分析
2019/11/25 Javascript
搭建vscode+vue环境的详细教程
2020/08/31 Javascript
基于elementUI竖向表格、和并列的案例
2020/10/26 Javascript
win7 下搭建sublime的python开发环境的配置方法
2014/06/18 Python
web.py获取上传文件名的正确方法
2014/08/26 Python
Python登录并获取CSDN博客所有文章列表代码实例
2017/12/28 Python
python调用c++传递数组的实例
2019/02/13 Python
详解Python在使用JSON时需要注意的编码问题
2019/12/06 Python
pandas分批读取大数据集教程
2020/06/06 Python
Python面向对象实现方法总结
2020/08/12 Python
Pandas之缺失数据的实现
2021/01/06 Python
Pytorch如何切换 cpu和gpu的使用详解
2021/03/01 Python
美国男士西装打折店:Jos. A. Bank
2017/11/13 全球购物
中东地区最大的奢侈品市场:The Luxury Closet
2019/04/09 全球购物
中软国际Java程序员笔试题
2014/07/19 面试题
生物制药专业求职信
2014/03/11 职场文书
2014社区三八妇女节活动方案
2014/03/30 职场文书
三年级评语大全
2014/04/23 职场文书
魂断蓝桥观后感
2015/06/10 职场文书
2016寒假社会实践心得体会范文
2015/10/09 职场文书
MySQL 十大常用字符串函数详解
2021/06/30 MySQL
使用redis生成唯一编号及原理示例详解
2021/09/15 Redis
Redis Stream类型的使用详解
2021/11/11 Redis
IIS服务器中设置HTTP重定向访问HTTPS
2022/04/29 Servers