浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估


Posted in Python onOctober 17, 2019

使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估。

效果如下(演示视频):

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

 由于这是通过比较面部色素的变化评估脉搏所以光线、人体移动、不同角度、不同电脑摄像头等因素均会影响评估效果,实验原理是面部色素对比,识别效果存在一定误差,各位小伙伴且当娱乐,代码如下:

import cv2
import numpy as np
import dlib
import time
from scipy import signal
# Constants
WINDOW_TITLE = 'Pulse Observer'
BUFFER_MAX_SIZE = 500  # Number of recent ROI average values to store
MAX_VALUES_TO_GRAPH = 50 # Number of recent ROI average values to show in the pulse graph
MIN_HZ = 0.83  # 50 BPM - minimum allowed heart rate
MAX_HZ = 3.33  # 200 BPM - maximum allowed heart rate
MIN_FRAMES = 100 # Minimum number of frames required before heart rate is computed. Higher values are slower, but
     # more accurate.
DEBUG_MODE = False
# Creates the specified Butterworth filter and applies it.
def butterworth_filter(data, low, high, sample_rate, order=5):
 nyquist_rate = sample_rate * 0.5
 low /= nyquist_rate
 high /= nyquist_rate
 b, a = signal.butter(order, [low, high], btype='band')
 return signal.lfilter(b, a, data)
# Gets the region of interest for the forehead.
def get_forehead_roi(face_points):
 # Store the points in a Numpy array so we can easily get the min and max for x and y via slicing
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 min_x = int(points[21, 0])
 min_y = int(min(points[21, 1], points[22, 1]))
 max_x = int(points[22, 0])
 max_y = int(max(points[21, 1], points[22, 1]))
 left = min_x
 right = max_x
 top = min_y - (max_x - min_x)
 bottom = max_y * 0.98
 return int(left), int(right), int(top), int(bottom)
# Gets the region of interest for the nose.
def get_nose_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Nose and cheeks
 min_x = int(points[36, 0])
 min_y = int(points[28, 1])
 max_x = int(points[45, 0])
 max_y = int(points[33, 1])
 left = min_x
 right = max_x
 top = min_y + (min_y * 0.02)
 bottom = max_y + (max_y * 0.02)
 return int(left), int(right), int(top), int(bottom)
# Gets region of interest that includes forehead, eyes, and nose.
# Note: Combination of forehead and nose performs better. This is probably because this ROI includes eyes,
# and eye blinking adds noise.
def get_full_roi(face_points):
 points = np.zeros((len(face_points.parts()), 2))
 for i, part in enumerate(face_points.parts()):
  points[i] = (part.x, part.y)
 # Only keep the points that correspond to the internal features of the face (e.g. mouth, nose, eyes, brows).
 # The points outlining the jaw are discarded.
 min_x = int(np.min(points[17:47, 0]))
 min_y = int(np.min(points[17:47, 1]))
 max_x = int(np.max(points[17:47, 0]))
 max_y = int(np.max(points[17:47, 1]))
 center_x = min_x + (max_x - min_x) / 2
 left = min_x + int((center_x - min_x) * 0.15)
 right = max_x - int((max_x - center_x) * 0.15)
 top = int(min_y * 0.88)
 bottom = max_y
 return int(left), int(right), int(top), int(bottom)
def sliding_window_demean(signal_values, num_windows):
 window_size = int(round(len(signal_values) / num_windows))
 demeaned = np.zeros(signal_values.shape)
 for i in range(0, len(signal_values), window_size):
  if i + window_size > len(signal_values):
   window_size = len(signal_values) - i
  curr_slice = signal_values[i: i + window_size]
  if DEBUG_MODE and curr_slice.size == 0:
   print ('Empty Slice: size={0}, i={1}, window_size={2}'.format(signal_values.size, i, window_size))
   print (curr_slice)
  demeaned[i:i + window_size] = curr_slice - np.mean(curr_slice)
 return demeaned
# Averages the green values for two arrays of pixels
def get_avg(roi1, roi2):
 roi1_green = roi1[:, :, 1]
 roi2_green = roi2[:, :, 1]
 avg = (np.mean(roi1_green) + np.mean(roi2_green)) / 2.0
 return avg
# Returns maximum absolute value from a list
def get_max_abs(lst):
 return max(max(lst), -min(lst))
# Draws the heart rate graph in the GUI window.
def draw_graph(signal_values, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 scale_factor_x = float(graph_width) / MAX_VALUES_TO_GRAPH
 # Automatically rescale vertically based on the value with largest absolute value
 max_abs = get_max_abs(signal_values)
 scale_factor_y = (float(graph_height) / 2.0) / max_abs
 midpoint_y = graph_height / 2
 for i in range(0, len(signal_values) - 1):
  curr_x = int(i * scale_factor_x)
  curr_y = int(midpoint_y + signal_values[i] * scale_factor_y)
  next_x = int((i + 1) * scale_factor_x)
  next_y = int(midpoint_y + signal_values[i + 1] * scale_factor_y)
  cv2.line(graph, (curr_x, curr_y), (next_x, next_y), color=(0, 255, 0), thickness=1)
 return graph
# Draws the heart rate text (BPM) in the GUI window.
def draw_bpm(bpm_str, bpm_width, bpm_height):
 bpm_display = np.zeros((bpm_height, bpm_width, 3), np.uint8)
 bpm_text_size, bpm_text_base = cv2.getTextSize(bpm_str, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7,
             thickness=2)
 bpm_text_x = int((bpm_width - bpm_text_size[0]) / 2)
 bpm_text_y = int(bpm_height / 2 + bpm_text_base)
 cv2.putText(bpm_display, bpm_str, (bpm_text_x, bpm_text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX,
    fontScale=2.7, color=(0, 255, 0), thickness=2)
 bpm_label_size, bpm_label_base = cv2.getTextSize('BPM', fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6,
              thickness=1)
 bpm_label_x = int((bpm_width - bpm_label_size[0]) / 2)
 bpm_label_y = int(bpm_height - bpm_label_size[1] * 2)
 cv2.putText(bpm_display, 'BPM', (bpm_label_x, bpm_label_y),
    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, color=(0, 255, 0), thickness=1)
 return bpm_display
# Draws the current frames per second in the GUI window.
def draw_fps(frame, fps):
 cv2.rectangle(frame, (0, 0), (100, 30), color=(0, 0, 0), thickness=-1)
 cv2.putText(frame, 'FPS: ' + str(round(fps, 2)), (5, 20), fontFace=cv2.FONT_HERSHEY_PLAIN,
    fontScale=1, color=(0, 255, 0))
 return frame
# Draw text in the graph area
def draw_graph_text(text, color, graph_width, graph_height):
 graph = np.zeros((graph_height, graph_width, 3), np.uint8)
 text_size, text_base = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, thickness=1)
 text_x = int((graph_width - text_size[0]) / 2)
 text_y = int((graph_height / 2 + text_base))
 cv2.putText(graph, text, (text_x, text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=color,
    thickness=1)
 return graph
# Calculate the pulse in beats per minute (BPM)
def compute_bpm(filtered_values, fps, buffer_size, last_bpm):
 # Compute FFT
 fft = np.abs(np.fft.rfft(filtered_values))
 # Generate list of frequencies that correspond to the FFT values
 freqs = fps / buffer_size * np.arange(buffer_size / 2 + 1)
 # Filter out any peaks in the FFT that are not within our range of [MIN_HZ, MAX_HZ]
 # because they correspond to impossible BPM values.
 while True:
  max_idx = fft.argmax()
  bps = freqs[max_idx]
  if bps < MIN_HZ or bps > MAX_HZ:
   if DEBUG_MODE:
    print ('BPM of {0} was discarded.'.format(bps * 60.0))
   fft[max_idx] = 0
  else:
   bpm = bps * 60.0
   break
 # It's impossible for the heart rate to change more than 10% between samples,
 # so use a weighted average to smooth the BPM with the last BPM.
 if last_bpm > 0:
  bpm = (last_bpm * 0.9) + (bpm * 0.1)
 return bpm
def filter_signal_data(values, fps):
 # Ensure that array doesn't have infinite or NaN values
 values = np.array(values)
 np.nan_to_num(values, copy=False)
 # Smooth the signal by detrending and demeaning
 detrended = signal.detrend(values, type='linear')
 demeaned = sliding_window_demean(detrended, 15)
 # Filter signal with Butterworth bandpass filter
 filtered = butterworth_filter(demeaned, MIN_HZ, MAX_HZ, fps, order=5)
 return filtered
# Get the average value for the regions of interest. Will also draw a green rectangle around
# the regions of interest, if requested.
def get_roi_avg(frame, view, face_points, draw_rect=True):
 # Get the regions of interest.
 fh_left, fh_right, fh_top, fh_bottom = get_forehead_roi(face_points)
 nose_left, nose_right, nose_top, nose_bottom = get_nose_roi(face_points)
 # Draw green rectangles around our regions of interest (ROI)
 if draw_rect:
  cv2.rectangle(view, (fh_left, fh_top), (fh_right, fh_bottom), color=(0, 255, 0), thickness=2)
  cv2.rectangle(view, (nose_left, nose_top), (nose_right, nose_bottom), color=(0, 255, 0), thickness=2)
 # Slice out the regions of interest (ROI) and average them
 fh_roi = frame[fh_top:fh_bottom, fh_left:fh_right]
 nose_roi = frame[nose_top:nose_bottom, nose_left:nose_right]
 return get_avg(fh_roi, nose_roi)
# Main function.
def run_pulse_observer(detector, predictor, webcam, window):
 roi_avg_values = []
 graph_values = []
 times = []
 last_bpm = 0
 graph_height = 200
 graph_width = 0
 bpm_display_width = 0
 # cv2.getWindowProperty() returns -1 when window is closed by user.
 while cv2.getWindowProperty(window, 0) == 0:
  ret_val, frame = webcam.read()
  # ret_val == False if unable to read from webcam
  if not ret_val:
   print ("ERROR: Unable to read from webcam. Was the webcam disconnected? Exiting.")
   shut_down(webcam)
  # Make copy of frame before we draw on it. We'll display the copy in the GUI.
  # The original frame will be used to compute heart rate.
  view = np.array(frame)
  # Heart rate graph gets 75% of window width. BPM gets 25%.
  if graph_width == 0:
   graph_width = int(view.shape[1] * 0.75)
   if DEBUG_MODE:
    print ('Graph width = {0}'.format(graph_width))
  if bpm_display_width == 0:
   bpm_display_width = view.shape[1] - graph_width
  # Detect face using dlib
  faces = detector(frame, 0)
  if len(faces) == 1:
   face_points = predictor(frame, faces[0])
   roi_avg = get_roi_avg(frame, view, face_points, draw_rect=True)
   roi_avg_values.append(roi_avg)
   times.append(time.time())
   # Buffer is full, so pop the value off the top to get rid of it
   if len(times) > BUFFER_MAX_SIZE:
    roi_avg_values.pop(0)
    times.pop(0)
   curr_buffer_size = len(times)
   # Don't try to compute pulse until we have at least the min. number of frames
   if curr_buffer_size > MIN_FRAMES:
    # Compute relevant times
    time_elapsed = times[-1] - times[0]
    fps = curr_buffer_size / time_elapsed # frames per second
    # Clean up the signal data
    filtered = filter_signal_data(roi_avg_values, fps)
    graph_values.append(filtered[-1])
    if len(graph_values) > MAX_VALUES_TO_GRAPH:
     graph_values.pop(0)
    # Draw the pulse graph
    graph = draw_graph(graph_values, graph_width, graph_height)
    # Compute and display the BPM
    bpm = compute_bpm(filtered, fps, curr_buffer_size, last_bpm)
    bpm_display = draw_bpm(str(int(round(bpm))), bpm_display_width, graph_height)
    last_bpm = bpm
    # Display the FPS
    if DEBUG_MODE:
     view = draw_fps(view, fps)
   else:
    # If there's not enough data to compute HR, show an empty graph with loading text and
    # the BPM placeholder
    pct = int(round(float(curr_buffer_size) / MIN_FRAMES * 100.0))
    loading_text = 'Computing pulse: ' + str(pct) + '%'
    graph = draw_graph_text(loading_text, (0, 255, 0), graph_width, graph_height)
    bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  else:
   # No faces detected, so we must clear the lists of values and timestamps. Otherwise there will be a gap
   # in timestamps when a face is detected again.
   del roi_avg_values[:]
   del times[:]
   graph = draw_graph_text('No face detected', (0, 0, 255), graph_width, graph_height)
   bpm_display = draw_bpm('--', bpm_display_width, graph_height)
  graph = np.hstack((graph, bpm_display))
  view = np.vstack((view, graph))
  cv2.imshow(window, view)
  key = cv2.waitKey(1)
  # Exit if user presses the escape key
  if key == 27:
   shut_down(webcam)
# Clean up
def shut_down(webcam):
 webcam.release()
 cv2.destroyAllWindows()
 exit(0)
def main():
 detector = dlib.get_frontal_face_detector()
 # Predictor pre-trained model can be downloaded from:
 # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
 try:
  predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
 except RuntimeError as e:
  print ('ERROR: \'shape_predictor_68_face_landmarks.dat\' was not found in current directory. ' \
    'Download it from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2')
  return
 webcam = cv2.VideoCapture(0)
 if not webcam.isOpened():
  print ('ERROR: Unable to open webcam. Verify that webcam is connected and try again. Exiting.')
  webcam.release()
  return
 cv2.namedWindow(WINDOW_TITLE)
 run_pulse_observer(detector, predictor, webcam, WINDOW_TITLE)
 # run_pulse_observer() returns when the user has closed the window. Time to shut down.
 shut_down(webcam)
if __name__ == '__main__':
 main()

总结

以上所述是小编给大家介绍的浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python中cPickle用法例子分享
Jan 03 Python
Python中处理字符串之islower()方法的使用简介
May 19 Python
Python实现HTTP协议下的文件下载方法总结
Apr 20 Python
对python 各种删除文件失败的处理方式分享
Apr 24 Python
在python2.7中用numpy.reshape 对图像进行切割的方法
Dec 05 Python
Python发送邮件测试报告操作实例详解
Dec 08 Python
python正则表达式匹配IP代码实例
Dec 28 Python
python数字类型math库原理解析
Mar 02 Python
通过实例了解python__slots__使用方法
Sep 14 Python
pyspark对Mysql数据库进行读写的实现
Dec 30 Python
解决pytorch 损失函数中输入输出不匹配的问题
Jun 05 Python
利用Python第三方库实现预测NBA比赛结果
Jun 21 Python
Python 3.8正式发布重要新功能一览
Oct 17 #Python
Python 装饰器@,对函数进行功能扩展操作示例【开闭原则】
Oct 17 #Python
python实现复制文件到指定目录
Oct 16 #Python
如何解决django-celery启动后迅速关闭
Oct 16 #Python
Python发送邮件的实例代码讲解
Oct 16 #Python
python运用sklearn实现KNN分类算法
Oct 16 #Python
python sklearn常用分类算法模型的调用
Oct 16 #Python
You might like
php 在线打包_支持子目录
2008/06/28 PHP
用PHP的ob_start() 控制您的浏览器cache
2009/08/03 PHP
关于Iframe如何跨域访问Cookie和Session的解决方法
2013/04/15 PHP
php简单统计中文个数的方法
2016/09/30 PHP
PHPCMS2008广告模板SQL注入漏洞修复
2016/10/11 PHP
Jquery Ajax请求代码(2)
2011/01/07 Javascript
基于jquery &amp; json的省市区联动代码
2012/06/26 Javascript
javascript常用的正则表达式实例
2014/05/15 Javascript
jQuery中scrollTop()方法用法实例
2015/01/16 Javascript
JQuery的常用选择器、过滤器、方法全面介绍
2016/05/25 Javascript
JS解决iframe之间通信和自适应高度的问题
2016/08/24 Javascript
jquery实现全选、不选、反选的两种方法
2016/09/06 Javascript
基于Bootstrap的网页设计实例
2017/03/01 Javascript
基于vue.js实现侧边菜单栏
2017/03/20 Javascript
JavaScript创建对象_动力节点Java学院整理
2017/06/27 Javascript
Textarea输入字数限制实例(兼容iOS&amp;安卓)
2017/07/06 Javascript
vue2.0的contextmenu右键弹出菜单的实例代码
2017/07/24 Javascript
axios向后台传递数组作为参数的方法
2018/08/11 Javascript
vue自定义指令用法经典实例小结
2019/03/16 Javascript
使用express来代理服务的方法
2019/06/21 Javascript
pandas全表查询定位某个值所在行列的方法
2018/04/12 Python
有关pycharm登录github时有的时候会报错connection reset的问题
2020/09/15 Python
css3 图片圆形显示 如何CSS将正方形图片显示为圆形图片布局
2014/10/10 HTML / CSS
标准毕业生自荐信范文
2013/11/04 职场文书
自荐书封面下载
2013/11/29 职场文书
运动会四百米广播稿
2014/01/19 职场文书
毕业生求职自荐书范文
2014/03/27 职场文书
老师对学生的寄语
2014/04/09 职场文书
综艺节目策划方案
2014/06/13 职场文书
工作目标责任书
2014/07/23 职场文书
党课培训心得体会
2014/09/02 职场文书
介绍信模板
2015/01/31 职场文书
绵山导游词
2015/02/05 职场文书
入党介绍人考察意见
2015/06/01 职场文书
承诺书的签字人,需不需要承担相应的责任?
2019/07/09 职场文书
Python re.sub 反向引用的实现
2021/07/07 Python