Posted in Javascript onNovember 18, 2020
Cesium绘制抛物弧线,供大家参考,具体内容如下
在网上搜了很多都没有搜到,于是自己花了点时间琢磨了一下,做个记录
思路
两点连线作为坐标轴,模拟抛物线,在线上取点画直线,主要用于高度/p>
取n个点,依次画线,得到近似的抛物线,点越多越光滑
JS代码
// 两点之间抛物线绘制函数,twoPoints是一个数组:[lon1,lat1,lon2,lat2] function animatedParabola(twoPoints) { //动态抛物线绘制 let startPoint = [twoPoints[0],twoPoints[1],0]; //起点的经度、纬度 let end = [twoPoints[2],twoPoints[3]]; //终点的经度、纬度 let step = 80; //线的数量,越多则越平滑 let heightProportion = 0.125; //最高点和总距离的比值(即图中H比上AB的值) let dLon = (end[0] - startPoint[0])/step; //经度差值 let dLat = (end[1] - startPoint[1])/step; //纬度差值 let deltaLon = dLon * Math.abs(111000*Math.cos(twoPoints[1])); //经度差(米级) let deltaLat = dLat * 111000; //纬度差(米),1纬度相差约111000米 let endPoint = [0,0,0]; //定义一个端点(后面将进行startPoint和endPoint两点画线) let heigh = (step * Math.sqrt(deltaLon*deltaLon+deltaLat*deltaLat) * heightProportion).toFixed(0); let x2 = (10000*Math.sqrt(dLon*dLon+dLat*dLat)).toFixed(0); //小数点扩大10000倍,提高精确度 let a = (heigh/(x2*x2)); //抛物线函数中的a function y(x,height) { //模拟抛物线函数求高度 //此处模拟的函数为y = H - a*x^2 (H为高度常数) return height - a*x*x; } for(let i = 1;i <= step; i++){ //逐“帧”画线 endPoint[0] = startPoint[0] + dLon; //更新end点经度 endPoint[1] = startPoint[1] + dLat; //更新end点纬度 let x = x2*(2*i/step-1); //求抛物线函数x endPoint[2] = (y(x,heigh)).toFixed(0); //求end点高度 viewer.clock.currentTime = Cesium.JulianDate.now(); //将时钟指针移到当前时间 //这里viewer是容器初始化时new Cesium.Viewer构造的: var viewer = new Cesium.Viewer('mapContainer', {...}); let IsoTime = Cesium.JulianDate.now(); //获取当前时间 viewer.entities.add({ //添加动态线 polyline: { positions: Cesium.Cartesian3.fromDegreesArrayHeights(startPoint.concat(endPoint)), width: 4, material: new Cesium.PolylineOutlineMaterialProperty({ color: Cesium.Color.GOLD, outlineWidth: 0.3, }) }, availability: new Cesium.TimeIntervalCollection([new Cesium.TimeInterval({ //设置显示的时间区间 start: { dayNumber: IsoTime.dayNumber, secondsOfDay: IsoTime.secondsOfDay+((i-1)*300), }, stop: { dayNumber: IsoTime.dayNumber, secondsOfDay: IsoTime.secondsOfDay+(i*300), }, })]), }); viewer.entities.add({ //添加静态线 polyline: { positions: Cesium.Cartesian3.fromDegreesArrayHeights(startPoint.concat(endPoint)), width: 4, material: new Cesium.PolylineGlowMaterialProperty({ color: Cesium.Color.AQUA.withAlpha(0.9), outlineWidth: 0.3, glowPower : 0.3, }) }, }); // end点变为start点 startPoint[0] = endPoint[0]; startPoint[1] = endPoint[1]; startPoint[2] = endPoint[2]; } viewer.clock.shouldAnimate = true; //启动时钟开始转动 viewer.clock.multiplier = 1600; //时钟转动速度 }
function parabola(twoPoints) { //抛物线绘制 let startPoint = [twoPoints[0],twoPoints[1],0]; //起点的经度、纬度 let end = [twoPoints[2],twoPoints[3]]; //终点的经度、纬度 let step = 80; //线的多少,越多则越平滑(但过多浏览器缓存也会占用越多) let heightProportion = 0.125; //最高点和总距离的比值 let dLon = (end[0] - startPoint[0])/step; //经度差值 let dLat = (end[1] - startPoint[1])/step; //纬度差值 let deltaLon = dLon * Math.abs(111000*Math.cos(twoPoints[1])); //经度差(米级) let deltaLat = dLat * 111000; //纬度差(米),1纬度相差约111000米 let endPoint = [0,0,0]; //定义一个端点(后面将进行startPoint和endPoint两点画线) let heigh = (step * Math.sqrt(deltaLon*deltaLon+deltaLat*deltaLat) * heightProportion).toFixed(0); let x2 = (10000*Math.sqrt(dLon*dLon+dLat*dLat)).toFixed(0); //小数点扩大10000倍,提高精确度 let a = (heigh/(x2*x2)); function y(x,height) { return height - a*x*x; } for(var i = 1;i <= step; i++){ //逐“帧”画线 endPoint[0] = startPoint[0] + dLon; //更新end点经度 endPoint[1] = startPoint[1] + dLat; //更新end点纬度 let x = x2*(2*i/step-1); //求抛物线函数x endPoint[2] = (y(x,heigh)).toFixed(0); //求end点高度 viewer.entities.add({ //添加静态线 polyline: { positions: Cesium.Cartesian3.fromDegreesArrayHeights(startPoint.concat(endPoint)), width: 4, material: new Cesium.PolylineGlowMaterialProperty({ color: Cesium.Color.AQUA.withAlpha(0.9), outlineWidth: 0.3, glowPower : 0.3, }) }, }); // end点变为start点 startPoint[0] = endPoint[0]; startPoint[1] = endPoint[1]; startPoint[2] = endPoint[2]; } }
示例
// An Example var viewer = new Cesium.Viewer('mapContainer'); var twoPoints = [114.3698, 22.6139, 114.2135, 22.6127]; animatedParabola(twoPoints);
运行可得到:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
基于Cesium绘制抛物弧线
- Author -
Holy_Jack声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@