tenserflow建立网络由于先建立静态的graph,所以没有数据,用placeholder来占位好申请内存。
那么keras的layer类其实是一个方便的直接帮你建立深度网络中的layer的类。
该类继承了object,是个基础的类,后续的诸如input_layer类都会继承与layer
由于model.py中利用这个方法建立网络,所以仔细看一下:他的说明详尽而丰富。
input()这个方法是用来初始化一个keras tensor的,tensor说白了就是个数组。他强大到之通过输入和输出就能建立一个keras模型。shape或者batch shape 必须只能给一个。shape = [None,None,None],会创建一个?*?*?的三维数组。
下面还举了个例子,a,b,c都是keras的tensor, `model = Model(input=[a, b], output=c)`
def Input(shape=None, batch_shape=None, name=None, dtype=None, sparse=False, tensor=None): """`Input()` is used to instantiate a Keras tensor. A Keras tensor is a tensor object from the underlying backend (Theano, TensorFlow or CNTK), which we augment with certain attributes that allow us to build a Keras model just by knowing the inputs and outputs of the model. For instance, if a, b and c are Keras tensors, it becomes possible to do: `model = Model(input=[a, b], output=c)` The added Keras attributes are: `_keras_shape`: Integer shape tuple propagated via Keras-side shape inference. `_keras_history`: Last layer applied to the tensor. the entire layer graph is retrievable from that layer, recursively. # Arguments shape: A shape tuple (integer), not including the batch size. For instance, `shape=(32,)` indicates that the expected input will be batches of 32-dimensional vectors. batch_shape: A shape tuple (integer), including the batch size. For instance, `batch_shape=(10, 32)` indicates that the expected input will be batches of 10 32-dimensional vectors. `batch_shape=(None, 32)` indicates batches of an arbitrary number of 32-dimensional vectors. name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. dtype: The data type expected by the input, as a string (`float32`, `float64`, `int32`...) sparse: A boolean specifying whether the placeholder to be created is sparse. tensor: Optional existing tensor to wrap into the `Input` layer. If set, the layer will not create a placeholder tensor. # Returns A tensor. # Example ```python # this is a logistic regression in Keras x = Input(shape=(32,)) y = Dense(16, activation='softmax')(x) model = Model(x, y) ``` """
tip:我们在model.py中用到了shape这个attribute,
input_image = KL.Input( shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image") input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE], name="input_image_meta")
阅读input()里面的句子逻辑:
可以发现,进入if语句的情况是batch_shape不为空,并且tensor为空,此时进入if,用assert判断如果shape不为空,那么久会有错误提示,告诉你要么输入shape 要么输入batch_shape, 还提示你shape不包含batch个数,就是一个batch包含多少张图片。
那么其实如果tensor不空的话,我们可以发现,也会弹出这个提示,但是作者没有写这种题型,感觉有点没有安全感。注意点好了
if not batch_shape and tensor is None: assert shape is not None, ('Please provide to Input either a `shape`' ' or a `batch_shape` argument. Note that ' '`shape` does not include the batch ' 'dimension.')
如果单纯的按照规定输入shape,举个例子:只将shape输入为None,也就是说tensor的dimension我都不知道,但我知道这是个向量,你看着办吧。
input_gt_class_ids = KL.Input(
shape=[None], name="input_gt_class_ids", dtype=tf.int32)
就会调用Input()函数中的这个判断句式,注意因为shape是个List,所以shape is not None 会返回true。同时有没有输入batch_shape的话,就会用shape的参数去创造一个batch_shape.
if shape is not None and not batch_shape:
batch_shape = (None,) + tuple(shape)
比如如果输入:
shape = (None,) batch_shape = (None,)+shape batch_shape #会得到(None, None)
可以发现,这里要求使用者至少指明你的数据维度,比如图片的话,是三维的,所以shape至少是[None,None,None],而且我认为shape = [None,1] 与shape = [None]是一样的都会创建一个不知道长度的向量。
以上这篇keras.layer.input()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
keras.layer.input()用法说明
- Author -
TinaO-O声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@