Numpy 多维数据数组的实现


Posted in Python onJune 18, 2020

numpy包(模块)几乎总是用于Python中的数值计算。这个软件包为Python提供了高性能的向量、矩阵、张量数据类型。它是在C和Fortran中创建的,因此当计算被矢量化(用矩阵和矢量表示操作)时,性能很高。

1.模块的导入:

%matplotlib inline
import matplotlib.pyplot as plt
from numpy import *

2.数组创建numpy

有几种初始化numpy数组的方法,例如:使用Python的list或tuple。使用旨在创建Numpy数组的函数,如arrange、linspace等。从文件中读取数据(例如Python pickle格式)

2.1根据列表创建numpy.array

v = array([1,2,3,4])
v

Numpy 多维数据数组的实现

M = array([[1, 2], [3, 4]])
M

Numpy 多维数据数组的实现

v和M 都是ndarray类型的对象,由numpy模块创建。

type(v), type(M)

Numpy 多维数据数组的实现

v数组和M数组的区别在于它们的尺寸(形式)。我们可以使用ndarray.shape属性来获取大小信息。

v.shape

Numpy 多维数据数组的实现

M.shape

Numpy 多维数据数组的实现

矩阵中元素的数量可以通过属性ndarray.size

M.size

Numpy 多维数据数组的实现

也可以使用numpy方法numpy.shape 和 numpy.size

shape(M)

Numpy 多维数据数组的实现

size(M)

Numpy 多维数据数组的实现

numpy.ndarray 看起来像一个普通的 Python 列表。使用它们而不是Python列表有几个原因。

Python的列表是非常常见的。它们可以包含任何对象。他们是动态类型化的。它们不支持矩阵和诗词作品等数学运算。由于动态类型的原因,在Python中用list实现这种操作并不是很有效。
Numpy数组是静态类型化和同质化的。元素类型是在创建数组时定义的(那么数组数据类型可以改变)。
Numpy数组不是很耗费内存。
得益于静态类型化,数学函数如乘积和numpy数组的和可以在编译语言中实现(使用C和Fortran)。
使用ndarray数组的dtype(数据类型)属性,我们可以看到数组的数据类型。

M.dtype

Numpy 多维数据数组的实现

试图分配一个错误类型(不一样的类型)的值会导致错误。

M[0,0] = "hello"

Numpy 多维数据数组的实现

创建数组时,可以分别指定数据类型。

M = array([[1, 2], [3, 4]], dtype=complex)
M

Numpy 多维数据数组的实现

通常使用以下dtype值:int、float、complex、bool、object等。

我们也可以用比特来指定大小:int64、int16、float128、complex128。

3.使用函数生成数组

使用python列表来指定大型数组是不切实际的。你可以使用各种Numpy方法。

3.1arrange

x = arange(0, 10, 1) # arguments: start, stop, step
x

Numpy 多维数据数组的实现

x = arange(-1, 1, 0.1)
x

Numpy 多维数据数组的实现

3.2linspace 和 logspace

使用linspace,区间的两端都被包括在内,参数:(开始,停止,点的数量)

linspace(0, 10, 25)

Numpy 多维数据数组的实现

logspace(0, 10, 10, base=e)

Numpy 多维数据数组的实现

3.3mgrid

x, y = mgrid[0:5, 0:5]
x
y

Numpy 多维数据数组的实现Numpy 多维数据数组的实现

3.4随机数

#导入所需模块
from numpy import random
#区间[0,1]内的均匀分布数。
random.rand(5,5)

Numpy 多维数据数组的实现

#来自于正态分布的随机数
random.randn(5,5)

Numpy 多维数据数组的实现

3.6diag

#对角矩阵
diag([1,2,3])

Numpy 多维数据数组的实现

#偏移对角矩阵
diag([1,2,3], k=1)

Numpy 多维数据数组的实现

3.5零和单位矩阵

zeros((3,3))

Numpy 多维数据数组的实现

ones((3,3))

Numpy 多维数据数组的实现

4.文件导入和导出

4.1逗号分隔的值(CSV)

一个非常常见的数据存储格式是CSV,以及类似的格式,如TSV(制表分隔值)。要从这些文件中读取数据,你可以使用以下方法numpy.genfromtxt

data = genfromtxt('stockholm_td_adj.dat')
data.shape

Numpy 多维数据数组的实现

fig, ax = plt.subplots(figsize=(14,4))
ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
ax.axis('tight')
ax.set_title('Температура в Стокгольме')
ax.set_xlabel('год')
ax.set_ylabel('температура (C)');

Numpy 多维数据数组的实现

使用numpy.savetxt我们可以将数组保存在CSV中。

M = random.rand(3,3)
M

Numpy 多维数据数组的实现

savetxt("random-matrix.csv", M)
savetxt("random-matrix.csv", M, fmt='%.5f') # fmt 指定格式

4.2numpy数组的主要文件格式。

保存和读取的方法numpy.save 和 numpy.load

save("random-matrix.npy", M)
load("random-matrix.npy")

Numpy 多维数据数组的实现

4.3numpy数组的其他属性

M.itemsize#每个byte中的单元数
M.nbytes#byte数目
M.ndim#单位数,计数

5.使用数组

5.1编制索引

你可以使用方括号和索引来选择数组的元素。

# v是一个只有一个维度的向量,所以一个索引就足以获得元素。
v[0]

Numpy 多维数据数组的实现

# M是一个矩阵(二维数组),所以需要两个索引(行,列)。
M[1,1]

Numpy 多维数据数组的实现

如果我们省略了多维数组中的索引,就会返回一些值(一般情况下,N-1维的数组)。

M

Numpy 多维数据数组的实现

M[1]

Numpy 多维数据数组的实现

M[1,:]#第一行

Numpy 多维数据数组的实现

M[:,1]#第一列

Numpy 多维数据数组的实现

使用索引,你可以为单个数组元素赋值。

M[0,0] = 1
M

也适用于行和列

#也适用于行和列
M[1,:] = 0
M[:,2] = -1
M

Numpy 多维数据数组的实现

5.2选择数组的一部分

你可以使用M[lower:uperior:step]语法来获取一个数组的一部分。

A = array([1,2,3,4,5])
A

Numpy 多维数据数组的实现

A[1:3]

Numpy 多维数据数组的实现

数组的部分是可变的:如果给它们分配新的值,那么从它们提取的数组就会改变原来的数组。

A[1:3] = [-2,-3]
A

Numpy 多维数据数组的实现

我们可以省略M[lower:upper:step]中的部分参数。

A[::]#下限、上限、默认步数

Numpy 多维数据数组的实现

低于零的指数从数组的末端开始计算。

A = array([1,2,3,4,5])
A[-1]#最后一个元素
A[-3:]#最后三个元素

索引分区也适用于多维数组。

A = array([[n+m*10 for n in range(5)] for m in range(5)]) 
A

Numpy 多维数据数组的实现

#方阵
A[1:4, 1:4]

Numpy 多维数据数组的实现

#渐进,带有指定间隔数
A[::2, ::2]

Numpy 多维数据数组的实现

5.3先进的索引方法

数组的值可以作为选择项目的索引。

row_indices = [1, 2, 3]
A[row_indices]

Numpy 多维数据数组的实现

col_indices = [1, 2, -1]
A[row_indices, col_indices]

Numpy 多维数据数组的实现

你也可以使用掩码:如果掩码类型为bool,那么根据掩码元素的值与相应的索引,选择该元素(True)或不选择(False)。

B = array([n for n in range(5)])
B

Numpy 多维数据数组的实现

row_mask = array([True, False, True, False, False])
B[row_mask]

Numpy 多维数据数组的实现

row_mask = array([1,0,1,0,0], dtype=bool)
B[row_mask]

Numpy 多维数据数组的实现

这个函数对于根据某些条件从数组中选择元素非常有用。

x = arange(0, 10, 0.5)
x

Numpy 多维数据数组的实现

mask = (5 < x) * (x < 7.5)
mask

Numpy 多维数据数组的实现

x[mask]

Numpy 多维数据数组的实现

5.4从数组中提取数据和创建数组的函数。

5.4.1where

索引掩码可以通过使用以下方法转换为位置索引 where

indices = where(mask)
indices

Numpy 多维数据数组的实现

x[indices]#这个索引相当于x[mask]的索引。

Numpy 多维数据数组的实现

5.4.2diag

使用diag函数还可以提取对角线和子对角线元素。

diag(A)

Numpy 多维数据数组的实现

diag(A,-1)

Numpy 多维数据数组的实现

5.4.3take

类似于上述的索引方法。

v2 = arange(-3,3)
v2

Numpy 多维数据数组的实现

row_indices = [1, 3, 5]
v2[row_indices]

Numpy 多维数据数组的实现

v2.take(row_indices)

Numpy 多维数据数组的实现

但take也可以在列表和其他对象上工作。

take([-3, -2, -1, 0, 1, 2], row_indices)

Numpy 多维数据数组的实现

5.4.4choose

从多个数组中提取数值。

which = [1, 0, 1, 0]
choices = [[-2,-2,-2,-2], [5,5,5,5]]
 
choose(which, choices) # 0th elem of 0 array, 1st elem of 1 array, ...

Numpy 多维数据数组的实现

6.线性代数

6.1点积运算

v1 = arange(0, 5)
v1 * 2

Numpy 多维数据数组的实现

v1 + 2

Numpy 多维数据数组的实现

A * 2

Numpy 多维数据数组的实现

A + 2

Numpy 多维数据数组的实现

6.2基础运算

A * A

Numpy 多维数据数组的实现

v1 * v1

Numpy 多维数据数组的实现

A.shape, v1.shape

Numpy 多维数据数组的实现

A * v1

Numpy 多维数据数组的实现

7.矩阵

7.1矩阵

dot(A, A)

Numpy 多维数据数组的实现

dot(A, v1)

Numpy 多维数据数组的实现

dot(v1, v1)

Numpy 多维数据数组的实现

也可以将数组转换为矩阵的类型。然后再根据矩阵代数的规律进行+、-、*的算术运算。

M = matrix(A)
v = matrix(v1).T#换位
v

Numpy 多维数据数组的实现

M * M

Numpy 多维数据数组的实现

M * v

Numpy 多维数据数组的实现

v.T * v

Numpy 多维数据数组的实现

v + M*v

Numpy 多维数据数组的实现

8.数据处理

shape(data)

Numpy 多维数据数组的实现

8.1平均值

#温度柱
mean(data[:,3])

Numpy 多维数据数组的实现

过去200年,斯德哥尔摩的平均气温在6.2摄氏度左右。

8.2标准差和离散度

std(data[:,3]), var(data[:,3])

Numpy 多维数据数组的实现

8.3sum, prod, и trace

d = arange(0, 10)
d

Numpy 多维数据数组的实现

#求和
sum(d)

Numpy 多维数据数组的实现

#所有元素的乘积
prod(d+1)
#累计总和
cumsum(d)

Numpy 多维数据数组的实现

#累积乘积
cumprod(d+1)
#和diag(A).sum()一样
trace(A)

Numpy 多维数据数组的实现

8.4多变量数据

m = random.rand(3,3)
m

Numpy 多维数据数组的实现

m.max()

Numpy 多维数据数组的实现

#每列最大值 
m.max(axis=0)

Numpy 多维数据数组的实现

#每行最大值 
m.max(axis=1)

Numpy 多维数据数组的实现

9.改变阵列的形状和大小

A

Numpy 多维数据数组的实现

n, m = A.shape
B = A.reshape((1,n*m))
B

Numpy 多维数据数组的实现

B[0,0:5] = 5
B

Numpy 多维数据数组的实现

A

Numpy 多维数据数组的实现

B = A.flatten()
B

Numpy 多维数据数组的实现

B[0:5] = 10
B

Numpy 多维数据数组的实现

#A没有改变,因为B是A的副本,不是同一个对象的引用。
A

Numpy 多维数据数组的实现

10.增加一个新的度量newaxis

v = array([1,2,3])
shape(v)

Numpy 多维数据数组的实现

#向量 -> 单列矩阵
v[:, newaxis]

Numpy 多维数据数组的实现

#尺寸
v[:,newaxis].shape

Numpy 多维数据数组的实现

v[newaxis,:].shape

Numpy 多维数据数组的实现

11.联合

b = array([[5, 6]])
a = array([[5, 6]])
concatenate((a, b), axis=0)

Numpy 多维数据数组的实现

concatenate((a, b), axis=1)

Numpy 多维数据数组的实现

12.hstack and vstack

vstack((a,b))

Numpy 多维数据数组的实现

hstack((a,b))

Numpy 多维数据数组的实现

13.Copy и "deep copy"

A = array([[1, 2], [3, 4]])
A

Numpy 多维数据数组的实现

#B等同于A
B = A 
#改变B,将影响A
B[0,0] = 10
 
B

Numpy 多维数据数组的实现

A

Numpy 多维数据数组的实现

B = copy(A)
#现在改变B将不再影响A
B[0,0] = -5
B

Numpy 多维数据数组的实现

A

Numpy 多维数据数组的实现

14.矩阵的循环

v = array([1,2,3,4])
 
for element in v:
  print(element)

Numpy 多维数据数组的实现

M = array([[1,2], [3,4]])
 
for row in M:
  print("row", row)
  
  for element in row:
    print(element)

Numpy 多维数据数组的实现

通过枚举,可以同时获得元素的值和索引。

for row_idx, row in enumerate(M):
  print("row_idx", row_idx, "row", row)
  
  for col_idx, element in enumerate(row):
    print("col_idx", col_idx, "element", element)
    
    # update the matrix M: square each element
    M[row_idx, col_idx] = element ** 2

Numpy 多维数据数组的实现

#每个元素现在都是列表
M

Numpy 多维数据数组的实现

到此这篇关于Numpy 多维数据数组的实现的文章就介绍到这了,更多相关Numpy 多维数据数组内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
如何在Python中编写并发程序
Feb 27 Python
Python各类图像库的图片读写方式总结(推荐)
Feb 23 Python
dataframe设置两个条件取值的实例
Apr 12 Python
Python2.7 实现引入自己写的类方法
Apr 29 Python
Python爬虫基础之XPath语法与lxml库的用法详解
Sep 13 Python
详解python websocket获取实时数据的几种常见链接方式
Jul 01 Python
python 并发编程 非阻塞IO模型原理解析
Aug 20 Python
win10系统下python3安装及pip换源和使用教程
Jan 06 Python
django form和field具体方法和属性说明
Jul 09 Python
Python 使用双重循环打印图形菱形操作
Aug 09 Python
Django中的JWT身份验证的实现
May 07 Python
Python图片验证码降噪和8邻域降噪
Aug 30 Python
python读取图像矩阵文件并转换为向量实例
Jun 18 #Python
Python datetime模块使用方法小结
Jun 18 #Python
Python读取Excel数据并生成图表过程解析
Jun 18 #Python
浅谈numpy中函数resize与reshape,ravel与flatten的区别
Jun 18 #Python
python名片管理系统开发
Jun 18 #Python
一文轻松掌握python语言命名规范规则
Jun 18 #Python
Python学习之路之pycharm的第一个项目搭建过程
Jun 18 #Python
You might like
Yii2使用swiftmailer发送邮件的方法
2016/05/03 PHP
修改Laravel自带的认证系统的User类的命名空间的步骤
2019/10/15 PHP
javascript 动态添加事件代码
2008/11/30 Javascript
setTimeout函数兼容各主流浏览器运行执行效果实例
2013/06/13 Javascript
js模仿jquery的写法示例代码
2013/06/16 Javascript
JavaScript对内存分配及管理机制详细解析
2013/11/11 Javascript
javascript写的异步加载js文件函数(支持数组传参)
2014/06/07 Javascript
jQuery Ajax()方法使用指南
2014/11/19 Javascript
JS中处理时间之setUTCMinutes()方法的使用
2015/06/12 Javascript
JavaScript编程中window的location与history对象详解
2015/10/26 Javascript
jQuery实现IE输入框完成placeholder标签功能的方法
2017/09/20 jQuery
Vue2 SSR渲染根据不同页面修改 meta
2017/11/20 Javascript
vue.js中实现登录控制的方法示例
2018/04/23 Javascript
vscode 开发Vue项目的方法步骤
2018/11/25 Javascript
VSCode使用之Vue工程配置eslint
2019/04/30 Javascript
JS算法题之查找数字在数组中的索引位置
2019/05/15 Javascript
JavaScript Array对象基本方法详解
2019/09/03 Javascript
JS数组方法join()用法实例分析
2020/01/18 Javascript
JavaScript实现复选框全选和取消全选
2020/11/20 Javascript
利用打码兔和超人打码自封装的打码类分享
2014/03/16 Python
python中列表元素连接方法join用法实例
2015/04/07 Python
Python开发之Nginx+uWSGI+virtualenv多项目部署教程
2019/05/13 Python
python实现倒计时小工具
2019/07/29 Python
解决pyshp UnicodeDecodeError的问题
2019/12/06 Python
Jupyter notebook无法导入第三方模块的解决方式
2020/04/15 Python
Python pip使用超时问题解决方案
2020/08/03 Python
HEMA法国:荷兰原创设计
2019/02/21 全球购物
牵手50香港:专为黄金岁月的单身人士而设的交友网站
2020/08/14 全球购物
英国时尚首饰品牌:Missoma
2020/06/29 全球购物
生日寄语大全
2014/04/08 职场文书
《生命的药方》教学反思
2014/04/08 职场文书
《沉香救母》教学反思
2014/04/19 职场文书
应届生面试求职信
2014/07/02 职场文书
中学综治宣传月活动总结
2015/05/07 职场文书
安全知识竞赛主持词
2015/06/30 职场文书
windows10声卡驱动怎么安装?win10声卡驱动安装操作步骤教程
2022/08/05 数码科技