python实现翻转棋游戏(othello)


Posted in Python onJuly 29, 2019

利用上一篇的框架,再写了个翻转棋的程序,为了调试minimax算法,花了两天的时间。

几点改进说明:

  • 拆分成四个文件:board.py,player.py,ai.py,othello.py。使得整个结构更清晰,更通用,更易于维护。
  • AI 的水平跟 minimax 的递归深度,以及评价函数有关。基于此,我把 minimax 和评价函数都放到 AI 类里面
  • AIPlayer 使用了多重继承。继承了 Player 与 AI 两个类
  • Game 类中把原run函数里的生成两个玩家的部分提出来,写成一个函数make_two_players,使得 run函数结构更清晰
  • AI 玩家等级不要选择 0:beginer。会报错,还没调试好

board.py

'''
作者:hhh5460
时间:2017年7月1日
'''

class Board(object):
 def __init__(self):
  self.empty = '.'
  self._board = [[self.empty for _ in range(8)] for _ in range(8)] # 规格:8*8
  self._board[3][4], self._board[4][3] = 'X', 'X'
  self._board[3][3], self._board[4][4] = 'O', 'O'
  
 # 增加 Board[][] 索引语法
 def __getitem__(self, index):
  return self._board[index]
 
 # 打印棋盘
 def print_b(self):
  board = self._board
  print(' ', ' '.join(list('ABCDEFGH')))
  for i in range(8):
   print(str(i+1),' '.join(board[i]))
   
 # 棋局终止
 def teminate(self):
  list1 = list(self.get_legal_actions('X'))
  list2 = list(self.get_legal_actions('O'))
  return [False, True][len(list1) == 0 and len(list2) == 0]
  
 # 判断赢家
 def get_winner(self):
  s1, s2 = 0, 0
  for i in range(8):
   for j in range(8):
    if self._board[i][j] == 'X':
     s1 += 1
    if self._board[i][j] == 'O':
     s2 += 1
  if s1 > s2:
   return 0 # 黑胜
  elif s1 < s2:
   return 1 # 白胜
  elif s1 == s2:
   return 2 # 平局
 # 落子
 def _move(self, action, color):
  x,y = action
  self._board[x][y] = color
  
  return self._flip(action, color)
  
 
  
 
 # 翻子(返回list)
 def _flip(self, action, color):
  flipped_pos = []
  
  for line in self._get_lines(action):
   for i,p in enumerate(line):
    if self._board[p[0]][p[1]] == self.empty: 
     break
    elif self._board[p[0]][p[1]] == color:
     flipped_pos.extend(line[:i])
     break
  
  for p in flipped_pos:
   self._board[p[0]][p[1]] = color
   
  return flipped_pos
  
 # 撤销
 def _unmove(self, action, flipped_pos, color):
  self._board[action[0]][action[1]] = self.empty
  
  uncolor = ['X', 'O'][color=='X']
  for p in flipped_pos:
   self._board[p[0]][p[1]] = uncolor
   
 # 生成8个方向的下标数组,方便后续操作
 def _get_lines(self, action):
  '''说明:刚开始我是用一维棋盘来考虑的,后来改为二维棋盘。偷懒,不想推倒重来,简单地修改了一下'''
  board_coord = [(i,j) for i in range(8) for j in range(8)] # 棋盘坐标
  
  r,c = action
  ix = r*8 + c
  r, c = ix//8, ix%8
  left = board_coord[r*8:ix] # 要反转
  right = board_coord[ix+1:(r+1)*8]
  top = board_coord[c:ix:8] # 要反转
  bottom = board_coord[ix+8:8*8:8]
  
  if r <= c:
   lefttop = board_coord[c-r:ix:9] # 要反转
   rightbottom = board_coord[ix+9:(7-(c-r))*8+7+1:9]
  else:
   lefttop = board_coord[(r-c)*8:ix:9] # 要反转
   rightbottom = board_coord[ix+9:7*8+(7-(c-r))+1:9]
  
  if r+c<=7:
   leftbottom = board_coord[ix+7:(r+c)*8:7]
   righttop = board_coord[r+c:ix:7] # 要反转
  else:
   leftbottom = board_coord[ix+7:7*8+(r+c)-7+1:7]
   righttop = board_coord[((r+c)-7)*8+7:ix:7] # 要反转
  
  # 有四个要反转,方便判断
  left.reverse()
  top.reverse()
  lefttop.reverse()
  righttop.reverse()
  lines = [left, top, lefttop, righttop, right, bottom, leftbottom, rightbottom]
  return lines
  
 # 检测,位置是否有子可翻
 def _can_fliped(self, action, color):
  flipped_pos = []
  
  for line in self._get_lines(action):
   for i,p in enumerate(line):
    if self._board[p[0]][p[1]] == self.empty: 
     break
    elif self._board[p[0]][p[1]] == color:
     flipped_pos.extend(line[:i])
     break
  return [False, True][len(flipped_pos) > 0]
  
 # 合法走法
 def get_legal_actions(self, color):
  uncolor = ['X', 'O'][color=='X']
  uncolor_near_points = [] # 反色邻近的空位
  
  board = self._board
  for i in range(8):
   for j in range(8):
    if board[i][j] == uncolor:
     for dx,dy in [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1)]:
      x, y = i+dx, j+dy
      if 0 <= x <=7 and 0 <= y <=7 and board[x][y] == self.empty and (x, y) not in uncolor_near_points:
       uncolor_near_points.append((x, y))
  for p in uncolor_near_points:
   if self._can_fliped(p, color):
    yield p

# 测试
if __name__ == '__main__':
 board = Board()
 board.print_b()
 print(list(board.get_legal_actions('X')))

player.py

from ai import AI

'''
作者:hhh5460
时间:2017年7月1日
'''

# 玩家
class Player(object):
 def __init__(self, color):
  self.color = color
  
 # 思考
 def think(self, board):
  pass
  
 # 落子
 def move(self, board, action):
  flipped_pos = board._move(action, self.color)
  return flipped_pos
  
 # 悔子
 def unmove(self, board, action, flipped_pos):
  board._unmove(action, flipped_pos, self.color)


# 人类玩家
class HumanPlayer(Player):
 def __init__(self, color):
  super().__init__(color)
 
 def think(self, board):
  while True:
   action = input("Turn to '{}'. \nPlease input a point.(such as 'A1'): ".format(self.color)) # A1~H8
   r, c = action[1], action[0].upper()
   if r in '12345678' and c in 'ABCDEFGH': # 合法性检查1
    x, y = '12345678'.index(r), 'ABCDEFGH'.index(c)
    if (x,y) in board.get_legal_actions(self.color): # 合法性检查2
     return x, y


# 电脑玩家(多重继承)
class AIPlayer(Player, AI):
 
 def __init__(self, color, level_ix=0):
  super().__init__(color)    # init Player
  super(Player, self).__init__(level_ix) # init AI
  
 
 def think(self, board):
  print("Turn to '{}'. \nPlease wait a moment. AI is thinking...".format(self.color))
  uncolor = ['X','O'][self.color=='X']
  opfor = AIPlayer(uncolor) # 假想敌,陪练
  action = self.brain(board, opfor, 4)
  return action

ai.py

import random

'''
作者:hhh5460
时间:2017年7月1日
'''

class AI(object):
 '''
 三个水平等级:初级(beginner)、中级(intermediate)、高级(advanced)
 '''
 def __init__(self, level_ix =0):
  # 玩家等级
  self.level = ['beginner','intermediate','advanced'][level_ix]
  # 棋盘位置权重,参考:https://github.com/k-time/ai-minimax-agent/blob/master/ksx2101.py
  self.board_weights = [
   [120, -20, 20, 5, 5, 20, -20, 120],
   [-20, -40, -5, -5, -5, -5, -40, -20],
   [ 20, -5, 15, 3, 3, 15, -5, 20],
   [ 5, -5, 3, 3, 3, 3, -5, 5],
   [ 5, -5, 3, 3, 3, 3, -5, 5],
   [ 20, -5, 15, 3, 3, 15, -5, 20],
   [-20, -40, -5, -5, -5, -5, -40, -20],
   [120, -20, 20, 5, 5, 20, -20, 120]
  ]
  
 # 评估函数(仅根据棋盘位置权重)
 def evaluate(self, board, color):
  uncolor = ['X','O'][color=='X']
  score = 0
  for i in range(8):
   for j in range(8):
    if board[i][j] == color:
     score += self.board_weights[i][j]
    elif board[i][j] == uncolor:
     score -= self.board_weights[i][j]
  return score

 # AI的大脑
 def brain(self, board, opponent, depth):
  if self.level == 'beginer':   # 初级水平
   _, action = self.randomchoice(board)
  elif self.level == 'intermediate': # 中级水平
   _, action = self.minimax(board, opponent, depth)
  elif self.level == 'advanced':  # 高级水平
   _, action = self.minimax_alpha_beta(board, opponent, depth)
  assert action is not None, 'action is None'
  return action
 
 # 随机选(从合法走法列表中随机选)
 def randomchoice(self, board):
  color = self.color
  action_list = list(board.get_legal_actions(color))
  return None, random.choice(action_list)
 
 # 极大极小算法,限制深度
 def minimax(self, board, opfor, depth=4): # 其中 opfor 是假想敌、陪练
  '''参考:https://github.com/k-time/ai-minimax-agent/blob/master/ksx2101.py'''
  color = self.color
  
  if depth == 0:
   return self.evaluate(board, color), None
  
  action_list = list(board.get_legal_actions(color))
  if not action_list:
   return self.evaluate(board, color), None
  
  best_score = -100000
  best_action = None

  for action in action_list:
   flipped_pos = self.move(board, action) # 落子
   score, _ = opfor.minimax(board, self, depth-1) # 深度优先,轮到陪练
   self.unmove(board, action, flipped_pos) # 回溯
   
   score = -score
   if score > best_score:
    best_score = score
    best_action = action

  return best_score, best_action
  
 # 极大极小算法,带alpha-beta剪枝
 def minimax_alpha_beta(self, board, opfor, depth=8, my_best=-float('inf'), opp_best=float('inf')):
  '''参考:https://github.com/k-time/ai-minimax-agent/blob/master/ksx2101.py'''
  color = self.color
  
  if depth == 0:
   return self.evaluate(board, color), None
  
  action_list = list(board.get_legal_actions(color))
  if not action_list:
   return self.evaluate(board, color), None
  
  best_score = my_best
  best_action = None
  
  for action in action_list:
   flipped_pos = self.move(board, action) # 落子
   score, _ = opfor.minimax_alpha_beta(board, self, depth-1, -opp_best, -best_score) # 深度优先,轮到陪练
   self.unmove(board, action, flipped_pos) # 回溯
   
   score = -score
   if score > best_score:
    best_score = score
    best_action = action
    
   if best_score > opp_best:
    break

  return best_score, best_action

othello.py

from board import Board
from player import HumanPlayer, AIPlayer

'''
作者:hhh5460
时间:2017年7月1日
'''

# 游戏
class Game(object):
 def __init__(self):
  self.board = Board()
  self.current_player = None
  
 # 生成两个玩家
 def make_two_players(self):
  ps = input("Please select two player's type:\n\t0.Human\n\t1.AI\nSuch as:0 0\n:")
  p1, p2 = [int(p) for p in ps.split(' ')]
  if p1 == 1 or p2 == 1: # 至少有一个AI玩家
   level_ix = int(input("Please select the level of AI player.\n\t0: beginner\n\t1: intermediate\n\t2: advanced\n:"))
   if p1 == 0:
    player1 = HumanPlayer('X')
    player2 = AIPlayer('O', level_ix)
   elif p2 == 0:
    player1 = AIPlayer('X', level_ix)
    player2 = HumanPlayer('O')
   else:
    player1 = AIPlayer('X', level_ix)
    player2 = AIPlayer('O', level_ix)
  else:
   player1, player2 = HumanPlayer('X'), HumanPlayer('O') # 先手执X,后手执O
  
  return player1, player2
 
 
 # 切换玩家(游戏过程中)
 def switch_player(self, player1, player2):
  if self.current_player is None:
   return player1
  else:
   return [player1, player2][self.current_player == player1]
 
 # 打印赢家
 def print_winner(self, winner): # winner in [0,1,2]
  print(['Winner is player1','Winner is player2','Draw'][winner])
 
 # 运行游戏
 def run(self):
  # 生成两个玩家
  player1, player2 = self.make_two_players()
  
  # 游戏开始
  print('\nGame start!\n')
  self.board.print_b() # 显示棋盘
  while True:
   self.current_player = self.switch_player(player1, player2) # 切换当前玩家
   
   action = self.current_player.think(self.board) # 当前玩家对棋盘进行思考后,得到招法
   
   if action is not None: 
    self.current_player.move(self.board, action) # 当前玩家执行招法,改变棋盘
   
   self.board.print_b() # 显示当前棋盘
   
   if self.board.teminate(): # 根据当前棋盘,判断棋局是否终止
    winner = self.board.get_winner() # 得到赢家 0,1,2
    break
  
  self.print_winner(winner)
  print('Game over!')
  
  self.board.print_history()
 
 
if __name__ == '__main__':
 Game().run()

效果图

python实现翻转棋游戏(othello)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
记录Django开发心得
Jul 16 Python
一个计算身份证号码校验位的Python小程序
Aug 15 Python
基于scrapy实现的简单蜘蛛采集程序
Apr 17 Python
Python实现的中国剩余定理算法示例
Aug 05 Python
Python Socket使用实例
Dec 18 Python
基于Python中单例模式的几种实现方式及优化详解
Jan 09 Python
opencv设置采集视频分辨率方式
Dec 10 Python
tensorflow 实现从checkpoint中获取graph信息
Feb 10 Python
Python基于Socket实现简单聊天室
Feb 17 Python
Python 线性回归分析以及评价指标详解
Apr 02 Python
python实现爱奇艺登陆密码RSA加密的方法示例详解
May 27 Python
django inspectdb 操作已有数据库数据的使用步骤
Feb 07 Python
Django如何将URL映射到视图
Jul 29 #Python
python3获取当前目录的实现方法
Jul 29 #Python
Python在Matplotlib图中显示中文字体的操作方法
Jul 29 #Python
Django框架创建mysql连接与使用示例
Jul 29 #Python
python使用minimax算法实现五子棋
Jul 29 #Python
浅析python 中大括号中括号小括号的区分
Jul 29 #Python
Django分页功能的实现代码详解
Jul 29 #Python
You might like
php strtotime 函数UNIX时间戳
2009/01/14 PHP
PHP中替换换行符的几种方法小结
2012/10/15 PHP
如何用php获取文件名后缀
2013/06/09 PHP
php 伪静态之IIS篇
2014/06/02 PHP
浅谈PHP Cookie处理函数
2016/06/10 PHP
PHP自定义函数格式化json数据示例
2016/09/14 PHP
JavaScript 字符串乘法
2009/08/20 Javascript
Js参数值中含有单引号或双引号问题的解决方法
2013/11/06 Javascript
js取float型小数点后两位数的方法
2014/01/18 Javascript
通过onmouseover选项卡实现img图片的变化
2014/02/12 Javascript
22点关于jquery性能优化的建议
2014/05/28 Javascript
JS给超链接加确认对话框的方法
2015/02/24 Javascript
理解javascript中的严格模式
2016/02/01 Javascript
form表单转Json提交的方法(推荐)
2016/09/23 Javascript
[原创]JavaScript语法高亮插件highlight.js用法详解【附highlight.js本站下载】
2016/11/01 Javascript
几行js代码实现自适应
2017/02/24 Javascript
微信小程序遇到修改数据后页面不渲染的问题解决
2017/03/09 Javascript
Vue使用json-server进行后端数据模拟功能
2018/04/17 Javascript
修改node.js默认的npm安装目录实例
2018/05/15 Javascript
node静态服务器实现静态读取文件或文件夹
2019/12/03 Javascript
VSCode launch.json配置详细教程
2020/06/18 Javascript
解决vue加scoped后就无法修改vant的UI组件的样式问题
2020/09/07 Javascript
JavaScript实现五子棋小游戏
2020/10/26 Javascript
浅谈vant组件Picker 选择器选单选问题
2020/11/04 Javascript
详解vue修改elementUI的分页组件视图没更新问题
2020/11/13 Javascript
基于Vant UI框架实现时间段选择器
2020/12/24 Javascript
python获取指定网页上所有超链接的方法
2015/04/04 Python
python对常见数据类型的遍历解析
2019/08/27 Python
django列表筛选功能的实现代码
2020/03/27 Python
Saucony澳大利亚官网:美国跑鞋品牌,运动鞋中的劳斯莱斯
2018/05/05 全球购物
计算机应用专业学生的自我评价分享
2013/11/03 职场文书
致铅球运动员广播稿精选
2014/01/12 职场文书
放飞梦想演讲稿
2014/05/05 职场文书
我在伊朗长大观后感
2015/06/16 职场文书
党章学习心得体会2016
2016/01/14 职场文书
Linux磁盘管理方法介绍
2022/06/01 Servers