详解pytorch 0.4.0迁移指南


Posted in Python onJune 16, 2019

总说

由于pytorch 0.4版本更新实在太大了, 以前版本的代码必须有一定程度的更新. 主要的更新在于 Variable和Tensor的合并., 当然还有Windows的支持, 其他一些就是支持scalar tensor以及修复bug和提升性能吧. Variable和Tensor的合并导致以前的代码会出错, 所以需要迁移, 其实迁移代价并不大.

Tensor和Variable的合并

说是合并, 其实是按照以前(0.1-0.3版本)的观点是: Tensor现在默认requires_grad=False的Variable了.torch.Tensortorch.autograd.Variable现在其实是同一个类! 没有本质的区别! 所以也就是说,现在已经没有纯粹的Tensor了, 是个Tensor, 它就支持自动求导!你现在要不要给Tensor包一下Variable, 都没有任何意义了.

查看Tensor的类型

使用.isinstance()或是x.type(), 用type()不能看tensor的具体类型.

>>> x = torch.DoubleTensor([1, 1, 1])
>>> print(type(x)) # was torch.DoubleTensor
"<class 'torch.Tensor'>"
>>> print(x.type()) # OK: 'torch.DoubleTensor'
'torch.DoubleTensor'
>>> print(isinstance(x, torch.DoubleTensor)) # OK: True
True

requires_grad 已经是Tensor的一个属性了

>>> x = torch.ones(1)
>>> x.requires_grad #默认是False
False
>>> y = torch.ones(1)
>>> z = x + y
>>> # 显然z的该属性也是False
>>> z.requires_grad
False
>>> # 所有变量都不需要grad, 所以会出错
>>> z.backward()
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
>>>
>>> # 可以将`requires_grad`作为一个参数, 构造tensor
>>> w = torch.ones(1, requires_grad=True)
>>> w.requires_grad
True
>>> total = w + z
>>> total.requires_grad
True
>>> # 现在可以backward了
>>> total.backward()
>>> w.grad
tensor([ 1.])
>>> # x,y,z都是不需要梯度的,他们的grad也没有计算
>>> z.grad == x.grad == y.grad == None
True

通过.requires_grad()来进行使得Tensor需要梯度.

不要随便用.data

以前.data是为了拿到Variable中的Tensor,但是后来, 两个都合并了. 所以.data返回一个新的requires_grad=False的Tensor!然而新的这个Tensor与以前那个Tensor是共享内存的. 所以不安全, 因为

y = x.data # x需要进行autograd
# y和x是共享内存的,但是这里y已经不需要grad了, 
# 所以会导致本来需要计算梯度的x也没有梯度可以计算.从而x不会得到更新!

所以, 推荐用x.detach(), 这个仍旧是共享内存的, 也是使得y的requires_grad为False,但是,如果x需要求导, 仍旧是可以自动求导的!

scalar的支持

这个非常重要啊!以前indexing一个一维Tensor,返回的是一个number类型,但是indexing一个Variable确实返回一个size为(1,)的vector.再比如一些reduction操作, 比如tensor.sum()返回一个number, 但是variable.sum()返回的是一个size为(1,)的vector.

scalar是0-维度的Tensor, 所以我们不能简单的用以前的方法创建, 我们用一个torch.tensor注意,是小写的!

y = x.data # x需要进行autograd
# y和x是共享内存的,但是这里y已经不需要grad了, 
# 所以会导致本来需要计算梯度的x也没有梯度可以计算.从而x不会得到更新!

从上面例子可以看出, 通过引入scalar, 可以将返回值的类型进行统一.
重点:
1. 取得一个tensor的值(返回number), 用.item()
2. 创建scalar的话,需要用torch.tensor(number)
3.torch.tensor(list)也可以进行创建tensor

累加loss

以前了累加loss(为了看loss的大小)一般是用total_loss+=loss.data[0], 比较诡异的是, 为啥是.data[0]? 这是因为, 这是因为loss是一个Variable, 所以以后累加loss, 用loss.item().
这个是必须的, 如果直接加, 那么随着训练的进行, 会导致后来的loss具有非常大的graph, 可能会超内存. 然而total_loss只是用来看的, 所以没必要进行维持这个graph!

弃用volatile

现在这个flag已经没用了. 被替换成torch.no_grad(),torch.set_grad_enable(grad_mode)等函数

>>> x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad():
...   y = x * 2
>>> y.requires_grad
False
>>>
>>> is_train = False
>>> with torch.set_grad_enabled(is_train):
...   y = x * 2
>>> y.requires_grad
False
>>> torch.set_grad_enabled(True) # this can also be used as a function
>>> y = x * 2
>>> y.requires_grad
True
>>> torch.set_grad_enabled(False)
>>> y = x * 2
>>> y.requires_grad
False

dypes,devices以及numpy-style的构造函数

dtype是data types, 对应关系如下:

详解pytorch 0.4.0迁移指南

通过.dtype可以得到

其他就是以前写device type都是用.cup()或是.cuda(), 现在独立成一个函数, 我们可以

>>> device = torch.device("cuda:1")
>>> x = torch.randn(3, 3, dtype=torch.float64, device=device)
tensor([[-0.6344, 0.8562, -1.2758],
    [ 0.8414, 1.7962, 1.0589],
    [-0.1369, -1.0462, -0.4373]], dtype=torch.float64, device='cuda:1')
>>> x.requires_grad # default is False
False
>>> x = torch.zeros(3, requires_grad=True)
>>> x.requires_grad
True

新的创建Tensor方法

主要是可以指定dtype以及device.

>>> device = torch.device("cuda:1")
>>> x = torch.randn(3, 3, dtype=torch.float64, device=device)
tensor([[-0.6344, 0.8562, -1.2758],
    [ 0.8414, 1.7962, 1.0589],
    [-0.1369, -1.0462, -0.4373]], dtype=torch.float64, device='cuda:1')
>>> x.requires_grad # default is False
False
>>> x = torch.zeros(3, requires_grad=True)
>>> x.requires_grad
True

用 torch.tensor来创建Tensor

这个等价于numpy.array,用途:
1.将python list的数据用来创建Tensor
2. 创建scalar

# 从列表中, 创建tensor
>>> cuda = torch.device("cuda")
>>> torch.tensor([[1], [2], [3]], dtype=torch.half, device=cuda)
tensor([[ 1],
    [ 2],
    [ 3]], device='cuda:0')

>>> torch.tensor(1)        # 创建scalar
tensor(1)

torch.*like以及torch.new_*

第一个是可以创建, shape相同, 数据类型相同.

>>> x = torch.randn(3, dtype=torch.float64)
 >>> torch.zeros_like(x)
 tensor([ 0., 0., 0.], dtype=torch.float64)
 >>> torch.zeros_like(x, dtype=torch.int)
 tensor([ 0, 0, 0], dtype=torch.int32)

当然如果是单纯想要得到属性与前者相同的Tensor, 但是shape不想要一致:

>>> x = torch.randn(3, dtype=torch.float64)
 >>> x.new_ones(2) # 属性一致
 tensor([ 1., 1.], dtype=torch.float64)
 >>> x.new_ones(4, dtype=torch.int)
 tensor([ 1, 1, 1, 1], dtype=torch.int32)

书写 device-agnostic 的代码

这个含义是, 不要显示的指定是gpu, cpu之类的. 利用.to()来执行.

# at beginning of the script
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

...

# then whenever you get a new Tensor or Module
# this won't copy if they are already on the desired device
input = data.to(device)
model = MyModule(...).to(device)

迁移代码对比

以前的写法

model = MyRNN()
 if use_cuda:
   model = model.cuda()

 # train
 total_loss = 0
 for input, target in train_loader:
   input, target = Variable(input), Variable(target)
   hidden = Variable(torch.zeros(*h_shape)) # init hidden
   if use_cuda:
     input, target, hidden = input.cuda(), target.cuda(), hidden.cuda()
   ... # get loss and optimize
   total_loss += loss.data[0]

 # evaluate
 for input, target in test_loader:
   input = Variable(input, volatile=True)
   if use_cuda:
     ...
   ...

现在的写法

# torch.device object used throughout this script
 device = torch.device("cuda" if use_cuda else "cpu")

 model = MyRNN().to(device)

 # train
 total_loss = 0
 for input, target in train_loader:
   input, target = input.to(device), target.to(device)
   hidden = input.new_zeros(*h_shape) # has the same device & dtype as `input`
   ... # get loss and optimize
   total_loss += loss.item()      # get Python number from 1-element Tensor

 # evaluate
 with torch.no_grad():          # operations inside don't track history
   for input, target in test_loader:
     ...

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之正规地说一句话
Sep 28 Python
python批量替换页眉页脚实例代码
Jan 22 Python
python 接口返回的json字符串实例
Mar 27 Python
解决pycharm remote deployment 配置的问题
Jun 27 Python
python 列表转为字典的两个小方法(小结)
Jun 28 Python
pygame实现俄罗斯方块游戏(基础篇1)
Oct 29 Python
python 普通克里金(Kriging)法的实现
Dec 19 Python
Python实现代码块儿折叠
Apr 15 Python
基于selenium及python实现下拉选项定位select
Jul 22 Python
浅谈Python 钉钉报警必备知识系统讲解
Aug 17 Python
Python经纬度坐标转换为距离及角度的实现
Nov 01 Python
利用Python实现翻译HTML中的文本字符串
Jun 21 Python
对pyqt5多线程正确的开启姿势详解
Jun 14 #Python
Python+PyQT5的子线程更新UI界面的实例
Jun 14 #Python
在PYQT5中QscrollArea(滚动条)的使用方法
Jun 14 #Python
PYQT5设置textEdit自动滚屏的方法
Jun 14 #Python
使用PyQt4 设置TextEdit背景的方法
Jun 14 #Python
Ubuntu18.04中Python2.7与Python3.6环境切换
Jun 14 #Python
ubuntu 16.04下python版本切换的方法
Jun 14 #Python
You might like
php 分页类 扩展代码
2009/06/11 PHP
PHP源代码数组统计count分析
2011/08/02 PHP
浅谈php正则表达式中的非贪婪模式匹配的使用
2014/11/25 PHP
PHP实现仿百度文库,豆丁在线文档效果(word,excel,ppt转flash)
2016/03/10 PHP
PHP Filter过滤器全面解析
2016/08/09 PHP
php使用CutyCapt实现网页截图保存的方法
2016/10/03 PHP
PHP设计模式之组合模式定义与应用示例
2020/02/01 PHP
IE innerHTML,outerHTML所引起的问题
2009/06/04 Javascript
由JavaScript中call()方法引发的对面向对象继承机制call的思考
2011/09/12 Javascript
js屏蔽鼠标键盘(右键/Ctrl+N/Shift+F10/F11/F5刷新/退格键)
2013/01/24 Javascript
AngularJS语法详解
2015/01/23 Javascript
JavaScript中的对象与JSON
2015/07/03 Javascript
jquery.fastLiveFilter.js实现输入自动过滤的方法
2015/08/11 Javascript
jQuery地图map悬停显示省市代码分享
2015/08/20 Javascript
轻松学习jQuery插件EasyUI EasyUI创建RSS Feed阅读器
2015/11/30 Javascript
jQuery使用模式窗口实现在主页面和子页面中互相传值的方法
2016/03/01 Javascript
微信小程序  audio音频播放详解及实例
2016/11/02 Javascript
使用clipboard.js实现复制功能的示例代码
2017/10/16 Javascript
JS Thunk 函数的含义和用法实例总结
2020/04/08 Javascript
JS+CSS实现过渡特效
2021/01/02 Javascript
Nodejs实现微信分账的示例代码
2021/01/19 NodeJs
Python使用装饰器进行django开发实例代码
2018/02/06 Python
selenium在执行phantomjs的API并获取执行结果的方法
2018/12/17 Python
python常用排序算法的实现代码
2019/11/08 Python
.img/.hdr格式转.nii格式的操作
2020/07/01 Python
在Ubuntu中安装并配置Pycharm教程的实现方法
2021/01/06 Python
Craghoppers德国官网:户外和旅行服装
2020/02/14 全球购物
美国折扣地毯销售网站:Rugs.com
2020/03/27 全球购物
Servlet如何得到服务器的信息
2015/12/22 面试题
元旦晚会感言
2014/03/12 职场文书
2014班子“三严三实”对照检查材料思想汇报
2014/09/18 职场文书
李强感恩观后感
2015/06/17 职场文书
JavaScript offset实现鼠标坐标获取和窗口内模块拖动
2021/05/30 Javascript
教你怎么用PyCharm为同一服务器配置多个python解释器
2021/05/31 Python
浅谈MySQL user权限表
2021/06/18 MySQL
PHP遍历数组的6种方式总结
2021/11/17 PHP