pandas.DataFrame的pivot()和unstack()实现行转列


Posted in Python onJuly 06, 2019

示例:有如下表需要进行行转列:

pandas.DataFrame的pivot()和unstack()实现行转列

代码如下:

# -*- coding:utf-8 -*-

import pandas as pd

import MySQLdb

from warnings import filterwarnings

# 由于create table if not exists总会抛出warning,因此使用filterwarnings消除

filterwarnings('ignore', category = MySQLdb.Warning)

from sqlalchemy import create_engine

import sys

if sys.version_info.major<3:

 reload(sys)

 sys.setdefaultencoding("utf-8")

 # 此脚本适用于python2和python3

host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8"

 

def get_df():

 global host,port,user,passwd,db,charset

 conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset}

 conn = MySQLdb.connect(**conn_config)

 result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

 return result_df

 

def pivot(result_df):

 df_pivoted_init=result_df.pivot('UserName','Subject','Score')

 df_pivoted = df_pivoted_init.reset_index() # 将行索引也作为DataFrame值的一部分,以方便存储数据库

 return df_pivoted_init,df_pivoted

 # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql

 

def unpivot(df_pivoted_init):

 # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存

 insert_sql="insert into test_unpivot(UserName,Subject,Score) values "

 # 处理值为NaN的情况

 df_pivoted_init=df_pivoted_init.fillna(0)

 for col in df_pivoted_init.columns:

  for index in df_pivoted_init.index:

   value=df_pivoted_init.at[index,col]

   if value!=0:

    insert_sql=insert_sql+"('%s','%s',%s)" %(index,col,value)+','

 insert_sql = insert_sql.strip(',')

 global host, port, user, passwd, db, charset

 conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset}

 conn = MySQLdb.connect(**conn_config)

 cur=conn.cursor()

 cur.execute("create table if not exists test_unpivot like TEST")

 cur.execute(insert_sql)

 conn.commit()

 conn.close()

 

def save_to_mysql(df_pivoted,tablename):

 global host, port, user, passwd, db, charset

 """

 只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性

 """

 conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset)

 mysql_engine = create_engine(conn)

 df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists='replace', index=False)

 

# 从TEST表读取源数据至DataFrame结构

result_df=get_df()

# 将源数据行转列为二维表格形式

df_pivoted_init,df_pivoted=pivot(result_df)

# 将二维表格形式的数据存到新表test中

save_to_mysql(df_pivoted,'test')

# 将被行转列的数据unpivot,存入test_unpivot表中

unpivot(df_pivoted_init)

结果如下:

pandas.DataFrame的pivot()和unstack()实现行转列

关于Pandas DataFrame类自带的pivot方法:

DataFrame.pivot(index=None, columns=None, values=None):

Return reshaped DataFrame organized by given index / column values.

这里只有3个参数,是因为pivot之后的结果一定是二维表格,只需要行列及其对应的值,而且也因为是二维表格,unpivot之后is_pass列是肯定会丢失的,因此一开始我就没查这个列。

补充说明:

在学习到Pandas的层次化索引部分时发现了2个很有意思的函数,也可以进行行列互转,其用法如下:(很久之后我才意识到,pivot只是封装了unstack的一个快捷方式而已,其本质上还是先用set_index建立层次化索引,然后用unstack进行重塑,就像我在下面示例做的操作)

# -*- coding:utf-8 -*-

import pandas as pd

import MySQLdb

from warnings import filterwarnings

# 由于create table if not exists总会抛出warning,因此使用filterwarnings消除

filterwarnings('ignore', category = MySQLdb.Warning)

from sqlalchemy import create_engine

import sys

if sys.version_info.major<3:

 reload(sys)

 sys.setdefaultencoding("utf-8")

 # 此脚本适用于python2和python3

host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8"

 

def get_df():

 global host,port,user,passwd,db,charset

 conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset}

 conn = MySQLdb.connect(**conn_config)

 result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

 return result_df

 

def pivot(result_df):

 df_pivoted_init=result_df.pivot('UserName','Subject','Score')

 df_pivoted = df_pivoted_init.reset_index() # 将行索引也作为DataFrame值的一部分,以方便存储数据库

 return df_pivoted_init,df_pivoted

 # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql

 

def unpivot(df_pivoted_init):

 # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存

 insert_sql="insert into test_unpivot(UserName,Subject,Score) values "

 # 处理值为NaN的情况

 df_pivoted_init=df_pivoted_init.fillna(0)

 for col in df_pivoted_init.columns:

  for index in df_pivoted_init.index:

   value=df_pivoted_init.at[index,col]

   if value!=0:

    insert_sql=insert_sql+"('%s','%s',%s)" %(index,col,value)+','

 insert_sql = insert_sql.strip(',')

 global host, port, user, passwd, db, charset

 conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset}

 conn = MySQLdb.connect(**conn_config)

 cur=conn.cursor()

 cur.execute("create table if not exists test_unpivot like TEST")

 cur.execute(insert_sql)

 conn.commit()

 conn.close()

 

def save_to_mysql(df_pivoted,tablename):

 global host, port, user, passwd, db, charset

 """

 只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性

 """

 conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset)

 mysql_engine = create_engine(conn)

 df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists='replace', index=False)

 

# 从TEST表读取源数据至DataFrame结构

result_df=get_df()

# 将源数据行转列为二维表格形式

df_pivoted_init,df_pivoted=pivot(result_df)

# 将二维表格形式的数据存到新表test中

save_to_mysql(df_pivoted,'test')

# 将被行转列的数据unpivot,存入test_unpivot表中

unpivot(df_pivoted_init)

以上利用了Pandas的层次化索引,实际上这也是层次化索引一个主要的用途,结合本例我们可以把代码改成如下:

result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

# 在从数据库中获取的数据格式是这样的:

    UserName Subject Score

0    张三   语文  80.0

1    张三   数学  90.0

2    张三   英语  70.0

3    张三   生物  85.0

4    李四   语文  80.0

5    李四   数学  92.0

6    李四   英语  76.0

7    王五   语文  60.0

8    王五   数学  82.0

9    王五   英语  96.0

10    王五   生物  78.0

# 如果要使用层次化索引,那么我们只需要把UserName和Subject列设置为层次化索引,Score为其对应的值即可,我们借用set_index()函数:

df=result_df.set_index(['UserName','Subject'])

In [112]: df.unstack()

Out[112]: 

     Score         

Subject   数学  生物  英语  语文

UserName            

张三    90.0 85.0 70.0 80.0

李四    92.0  NaN 76.0 80.0

王五    82.0 78.0 96.0 60.0

# 使用stack可以将unstack的结果转回来,这样就也在形式上实现了行列互转,之后的操作基本一致了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python解决字典中的值是列表问题的方法
Mar 04 Python
举例详解Python中的split()函数的使用方法
Apr 07 Python
python利用不到一百行代码实现一个小siri
Mar 02 Python
python实现定时自动备份文件到其他主机的实例代码
Feb 23 Python
Pythony运维入门之Socket网络编程详解
Apr 15 Python
Django框架orM与自定义SQL语句混合事务控制操作
Jun 27 Python
用python求一个数组的和与平均值的实现方法
Jun 29 Python
wxPython实现画图板
Aug 27 Python
python实现飞船大战
Apr 24 Python
详解用 python-docx 创建浮动图片
Jan 24 Python
用 Python 元类的特性实现 ORM 框架
May 19 Python
Python实现日志实时监测的示例详解
Apr 06 Python
从列表或字典创建Pandas的DataFrame对象的方法
Jul 06 #Python
pandas的qcut()方法详解
Jul 06 #Python
pandas 层次化索引的实现方法
Jul 06 #Python
pandas删除行删除列增加行增加列的实现
Jul 06 #Python
Python使用Pandas库实现MySQL数据库的读写
Jul 06 #Python
python 实现的发送邮件模板【普通邮件、带附件、带图片邮件】
Jul 06 #Python
Python 微信爬虫完整实例【单线程与多线程】
Jul 06 #Python
You might like
PHP运行时强制显示出错信息的代码
2011/04/20 PHP
PHP实现的获取文件mimes类型工具类示例
2018/04/08 PHP
javascript 操作Word和Excel的实现代码
2009/10/26 Javascript
javascript 原型继承介绍
2011/08/30 Javascript
javascript巧用eval函数组装表单输入项为json对象的方法
2015/11/25 Javascript
js以分隔符分隔数组中的元素并转换为字符串的方法
2016/11/16 Javascript
JavaScript构建自己的对象示例
2016/11/29 Javascript
jQuery和CSS仿京东仿淘宝列表导航菜单
2017/01/04 Javascript
JavaScript实现前端实时搜索功能
2020/03/26 Javascript
Vue中正确使用jQuery的方法
2017/10/30 jQuery
JS实现点击下拉菜单把选择的内容同步到input输入框内的实例
2018/01/23 Javascript
jQuery-Citys省市区三级菜单联动插件使用详解
2019/07/26 jQuery
jQuery Datatables 动态列+跨列合并实现代码
2020/01/30 jQuery
解决小程序无法触发SESSION问题
2020/02/03 Javascript
浅谈使用nodejs搭建web服务器的过程
2020/07/20 NodeJs
vue+Element-ui前端实现分页效果
2020/11/15 Javascript
[01:07:46]完美世界DOTA2联赛循环赛 Magma vs IO BO2第二场 11.01
2020/11/02 DOTA
Python Web开发模板引擎优缺点总结
2014/05/06 Python
Python入门及进阶笔记 Python 内置函数小结
2014/08/09 Python
Python中__name__的使用实例
2015/04/14 Python
python使用Plotly绘图工具绘制水平条形图
2020/03/25 Python
Keras在训练期间可视化训练误差和测试误差实例
2020/06/16 Python
opencv 图像礼帽和图像黑帽的实现
2020/07/07 Python
多个版本的python共存时使用pip的正确做法
2020/10/26 Python
python urllib和urllib3知识点总结
2021/02/08 Python
CSS3属性box-shadow使用指南
2014/12/09 HTML / CSS
详解CSS3实现响应式手风琴效果
2020/06/10 HTML / CSS
澳大利亚美容产品及化妆品在线:Activeskin
2020/06/03 全球购物
工业自动化专业毕业生推荐信
2013/11/18 职场文书
活动总结新闻稿
2014/08/30 职场文书
党的群众路线对照检查材料
2014/09/22 职场文书
先进教师个人主要事迹材料
2015/11/03 职场文书
2020年个人安全保证书参考模板
2020/01/08 职场文书
OpenCV-Python实现人脸美白算法的实例
2021/06/11 Python
Python实现灰色关联分析与结果可视化的详细代码
2022/03/25 Python
js判断两个数组相等的5种方法
2022/05/06 Javascript