python3对拉勾数据进行可视化分析的方法详解


Posted in Python onApril 03, 2019

前言

上回说到我们如何把拉勾的数据抓取下来的,既然获取了数据,就别放着不动,把它拿出来分析一下,看看这些数据里面都包含了什么信息。

(本次博客源码地址:https://github.com/MaxLyu/Lagou_Analyze (本地下载))

下面话不多说了,来一起看看详细的介绍吧

一、前期准备

由于上次抓的数据里面包含有 ID 这样的信息,我们需要将它去掉,并且查看描述性统计,确认是否存在异常值或者确实值。

read_file = "analyst.csv"
# 读取文件获得数据
data = pd.read_csv(read_file, encoding="gbk")
# 去除数据中无关的列
data = data[:].drop(['ID'], axis=1)
# 描述性统计
data.describe()

python3对拉勾数据进行可视化分析的方法详解

结果中的 unique 表示的是在该属性列下面存在的不同值个数,以学历要求为例子,它包含【本科、大专、硕士、不限】这4个不同的值,top 则表示数量最多的值为【本科】,freq 表示出现的频率为 387。由于薪资的 unique 比较多,我们查看一下存在什么值。

print(data['学历要求'].unique())
print(data['工作经验'].unique())
print(data['薪资'].unique())

python3对拉勾数据进行可视化分析的方法详解

二、预处理

从上述两张图可以看到,学历要求和工作经验的值比较少且没有缺失值与异常值,可以直接进行分析;但薪资的分布比较多,总计有75种,为了更好地进行分析,我们要对薪资做一个预处理。根据其分布情况,可以将它分成【5k 以下、5k-10k、10k-20k、20k-30k、30k-40k、40k 以上】,为了更加方便我们分析,取每个薪资范围的中位数,并划分到我们指定的范围内。

# 对薪资进行预处理
def pre_salary(data):
 salarys = data['薪资'].values
 salary_dic = {}
 for salary in salarys:
 # 根据'-'进行分割并去掉'k',分别将两端的值转换成整数
 min_sa = int(salary.split('-')[0][:-1])
 max_sa = int(salary.split('-')[1][:-1])
 # 求中位数
 median_sa = (min_sa + max_sa) / 2
 # 判断其值并划分到指定范围
 if median_sa < 5:
 salary_dic[u'5k以下'] = salary_dic.get(u'5k以下', 0) + 1
 elif median_sa > 5 and median_sa < 10:
 salary_dic[u'5k-10k'] = salary_dic.get(u'5k-10k', 0) + 1
 elif median_sa > 10 and median_sa < 20:
 salary_dic[u'10k-20k'] = salary_dic.get(u'10k-20k', 0) + 1
 elif median_sa > 20 and median_sa < 30:
 salary_dic[u'20k-30k'] = salary_dic.get(u'20k-30k', 0) + 1
 elif median_sa > 30 and median_sa < 40:
 salary_dic[u'30k-40k'] = salary_dic.get(u'30k-40k', 0) + 1
 else:
 salary_dic[u'40以上'] = salary_dic.get(u'40以上', 0) + 1
 print(salary_dic)
 return salary_dic

对【薪资】进行预处理之后,还要对【任职要求】的文本进行预处理。因为要做成词云图,需要对文本进行分割并去除掉一些出现频率较多但没有意义的词,我们称之为停用词,所以我们用 jieba 库进行处理。jieba 是一个python实现的分词库,对中文有着很强大的分词能力。

import jieba
def cut_text(text):
 stopwords =['熟悉','技术','职位','相关','工作','开发','使用','能力',
 '优先','描述','任职','经验','经验者','具有','具备','以上','善于',
 '一种','以及','一定','进行','能够','我们']
 for stopword in stopwords:
 jieba.del_word(stopword)
 
 words = jieba.lcut(text)
 content = " ".join(words)
 return content

预处理完成之后,就可以进行可视化分析了。

三、可视化分析

我们先绘制环状图和柱状图,然后将数据传进去就行了,环状图的代码如下:

def draw_pie(dic):
 labels = []
 count = []
 
 for key, value in dic.items():
 labels.append(key)
 count.append(value)
 
 fig, ax = plt.subplots(figsize=(8, 6), subplot_kw=dict(aspect="equal"))

 # 绘制饼状图,wedgeprops 表示每个扇形的宽度
 wedges, texts = ax.pie(count, wedgeprops=dict(width=0.5), startangle=0)
 # 文本框设置
 bbox_props = dict(boxstyle="square,pad=0.9", fc="w", ec="k", lw=0)
 # 线与箭头设置
 kw = dict(xycoords='data', textcoords='data', arrowprops=dict(arrowstyle="-"),
 bbox=bbox_props, zorder=0, va="center")

 for i, p in enumerate(wedges):
 ang = (p.theta2 - p.theta1)/2. + p.theta1
 y = np.sin(np.deg2rad(ang))
 x = np.cos(np.deg2rad(ang))
 # 设置文本框在扇形的哪一侧
 horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
 # 用于设置箭头的弯曲程度
 connectionstyle = "angle,angleA=0,angleB={}".format(ang)
 kw["arrowprops"].update({"connectionstyle": connectionstyle})
 # annotate()用于对已绘制的图形做标注,text是注释文本,含 'xy' 的参数跟坐标点有关
 text = labels[i] + ": " + str('%.2f' %((count[i])/sum(count)*100)) + "%"
 ax.annotate(text, size=13, xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
  horizontalalignment=horizontalalignment, **kw)
 plt.show()

柱状图的代码如下:

def draw_workYear(data):
 workyears = list(data[u'工作经验'].values)
 wy_dic = {}
 labels = []
 count = []
 # 得到工作经验对应的数目并保存到count中
 for workyear in workyears:
 wy_dic[workyear] = wy_dic.get(workyear, 0) + 1
 print(wy_dic)
 # wy_series = pd.Series(wy_dic)
 # 分别得到 count 的 key 和 value
 for key, value in wy_dic.items():
 labels.append(key)
 count.append(value)
 # 生成 keys 个数的数组
 x = np.arange(len(labels)) + 1
 # 将 values 转换成数组
 y = np.array(count)
 
 fig, axes = plt.subplots(figsize=(10, 8))
 axes.bar(x, y, color="#1195d0")
 plt.xticks(x, labels, size=13, rotation=0)
 plt.xlabel(u'工作经验', fontsize=15)
 plt.ylabel(u'数量', fontsize=15)
 
 # 根据坐标将数字标在图中,ha、va 为对齐方式
 for a, b in zip(x, y):
 plt.text(a, b+1, '%.0f' % b, ha='center', va='bottom', fontsize=12)
 plt.show()

我们再把学历要求和薪资的数据稍微处理一下变成字典形式,传进绘制好的环状图函数就行了。另外,我们还要对【任职要求】的文本进行可视化。

from wordcloud import WordCloud
# 绘制词云图
def draw_wordcloud(content):
 
 wc = WordCloud(
 font_path = 'c:\\Windows\Fonts\msyh.ttf',
 background_color = 'white',
 max_font_size=150, # 字体最大值
 min_font_size=24, # 字体最小值
 random_state=800, # 随机数
 collocations=False, # 避免重复单词
 width=1600,height=1200,margin=35, # 图像宽高,字间距
 )
 wc.generate(content)

 plt.figure(dpi=160) # 放大或缩小
 plt.imshow(wc, interpolation='catrom',vmax=1000)
 plt.axis("off") # 隐藏坐标

四、成果与总结

python3对拉勾数据进行可视化分析的方法详解

python数据分析师的学历大部分要求是本科,占了86%。

python3对拉勾数据进行可视化分析的方法详解

从柱状图可以看出,python数据分析师的工作经验绝大部分要求1-5年。

python3对拉勾数据进行可视化分析的方法详解

由此可以得出python数据分析的工资为10k-20k的比较多,40以上的也不少,工资高估计要求会比较高,所以我们看一下职位要求。

python3对拉勾数据进行可视化分析的方法详解

从词云图可看出,数据分析肯定要对数据比较敏感,并且对统计学、excel、python、数据挖掘、hadoop等也有一定的要求。不仅如此,还要求具有一定的抗压能力、解决问题的能力、良好的表达能力、思维能力等。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
python爬虫入门教程之点点美女图片爬虫代码分享
Sep 02 Python
python中getaddrinfo()基本用法实例分析
Jun 28 Python
Python中time模块与datetime模块在使用中的不同之处
Nov 24 Python
python下setuptools的安装详解及No module named setuptools的解决方法
Jul 06 Python
Python基于贪心算法解决背包问题示例
Nov 27 Python
Python封装原理与实现方法详解
Aug 28 Python
浅析Python 中几种字符串格式化方法及其比较
Jul 02 Python
pandas中read_csv的缺失值处理方式
Dec 19 Python
django之从html页面表单获取输入的数据实例
Mar 16 Python
Python面向对象多态实现原理及代码实例
Sep 16 Python
Python urlopen()参数代码示例解析
Dec 10 Python
使用Django框架创建项目
Jun 10 Python
python2.7使用plotly绘制本地散点图和折线图
Apr 02 #Python
Python时间序列处理之ARIMA模型的使用讲解
Apr 02 #Python
Python代码实现删除一个list里面重复元素的方法
Apr 02 #Python
从0开始的Python学习014面向对象编程(推荐)
Apr 02 #Python
Python参数解析模块sys、getopt、argparse使用与对比分析
Apr 02 #Python
python flask安装和命令详解
Apr 02 #Python
详解python 3.6 安装json 模块(simplejson)
Apr 02 #Python
You might like
《雄兵连》系列首部大电影《烈阳天道》:可能是因为期望值太高了
2020/08/18 国漫
PHP抓屏函数实现屏幕快照代码分享
2014/01/02 PHP
PHP解析html类库simple_html_dom的转码bug
2014/05/22 PHP
PHP编程之设置apache虚拟目录
2016/07/08 PHP
php操作access数据库的方法详解
2017/02/22 PHP
JavaScript中继承的一些示例方法与属性参考
2010/08/07 Javascript
js Form.elements[i]的使用实例
2011/11/13 Javascript
jQuery中addClass()方法用法实例
2015/01/05 Javascript
javascript实现全角与半角字符的转换
2015/01/07 Javascript
深入理解JavaScript系列(41):设计模式之模板方法详解
2015/03/04 Javascript
JavaScript通过prototype给对象定义属性用法实例
2015/03/23 Javascript
JS实现浏览器状态栏显示时间的方法
2015/10/27 Javascript
基于jQuery实现的美观星级评论打分组件代码
2015/10/30 Javascript
你不知道的 javascript【推荐】
2017/01/08 Javascript
创建简单的node服务器实例(分享)
2017/06/23 Javascript
bootstrap switch开关组件使用方法详解
2017/08/22 Javascript
使用vue-aplayer插件时出现的问题的解决
2018/03/02 Javascript
解决JavaScript中0.1+0.2不等于0.3问题
2018/10/23 Javascript
微信小程序BindTap快速连续点击目标页面跳转多次问题处理
2019/04/08 Javascript
详解nvm管理多版本node踩坑
2019/07/26 Javascript
解决layer弹出层msg的文字不显示的问题
2019/09/11 Javascript
工作中常用js功能汇总
2020/11/07 Javascript
在自动化中用python实现键盘操作的方法详解
2019/07/19 Python
Python 时间戳之获取整点凌晨时间戳的操作方法
2020/01/28 Python
python实现学生信息管理系统源码
2021/02/22 Python
canvas画图被放大且模糊的解决方法
2020/08/11 HTML / CSS
DHC美国官网:日本通信销售第一的化妆品品牌
2017/11/12 全球购物
英国鲜花速递:Serenata Flowers
2018/04/03 全球购物
Java的for语句中break, continue和return的区别
2013/12/19 面试题
演讲稿开场白
2014/01/13 职场文书
中学生获奖感言
2014/02/04 职场文书
优良学风班总结材料
2014/02/08 职场文书
建筑工地宣传标语
2014/06/18 职场文书
基层干部群众路线教育实践活动个人对照检查材料
2014/09/23 职场文书
创业计划书之家教中心
2019/09/25 职场文书
七年级作文之秋游
2019/10/21 职场文书