解读python如何实现决策树算法


Posted in Python onOctober 11, 2018

数据描述

每条数据项储存在列表中,最后一列储存结果

多条数据项形成数据集

data=[[d1,d2,d3...dn,result],
   [d1,d2,d3...dn,result],
        .
        .
   [d1,d2,d3...dn,result]]

决策树数据结构

class DecisionNode:
  '''决策树节点
  '''
   
  def __init__(self,col=-1,value=None,results=None,tb=None,fb=None):
    '''初始化决策树节点
     
    args:    
    col -- 按数据集的col列划分数据集
    value -- 以value作为划分col列的参照
    result -- 只有叶子节点有,代表最终划分出的子数据集结果统计信息。{‘结果':结果出现次数}
    rb,fb -- 代表左右子树
    '''
    self.col=col
    self.value=value
    self.results=results
    self.tb=tb
    self.fb=fb

决策树分类的最终结果是将数据项划分出了若干子集,其中每个子集的结果都一样,所以这里采用{‘结果':结果出现次数}的方式表达每个子集

def pideset(rows,column,value):
  '''依据数据集rows的column列的值,判断其与参考值value的关系对数据集进行拆分
    返回两个数据集
  '''
  split_function=None
  #value是数值类型
  if isinstance(value,int) or isinstance(value,float):
    #定义lambda函数当row[column]>=value时返回true
    split_function=lambda row:row[column]>=value
  #value是字符类型
  else:
    #定义lambda函数当row[column]==value时返回true
    split_function=lambda row:row[column]==value
  #将数据集拆分成两个
  set1=[row for row in rows if split_function(row)]
  set2=[row for row in rows if not split_function(row)]
  #返回两个数据集
  return (set1,set2)
 
def uniquecounts(rows):
  '''计算数据集rows中有几种最终结果,计算结果出现次数,返回一个字典
  '''
  results={}
  for row in rows:
    r=row[len(row)-1]
    if r not in results: results[r]=0
    results[r]+=1
  return results
 
def giniimpurity(rows):
  '''返回rows数据集的基尼不纯度
  '''
  total=len(rows)
  counts=uniquecounts(rows)
  imp=0
  for k1 in counts:
    p1=float(counts[k1])/total
    for k2 in counts:
      if k1==k2: continue
      p2=float(counts[k2])/total
      imp+=p1*p2
  return imp
 
def entropy(rows):
  '''返回rows数据集的熵
  '''
  from math import log
  log2=lambda x:log(x)/log(2) 
  results=uniquecounts(rows)
  ent=0.0
  for r in results.keys():
    p=float(results[r])/len(rows)
    ent=ent-p*log2(p)
  return ent
 
def build_tree(rows,scoref=entropy):
  '''构造决策树
  '''
  if len(rows)==0: return DecisionNode()
  current_score=scoref(rows)
 
  # 最佳信息增益
  best_gain=0.0
  #
  best_criteria=None
  #最佳划分
  best_sets=None
 
  column_count=len(rows[0])-1
  #遍历数据集的列,确定分割顺序
  for col in range(0,column_count):
    column_values={}
    # 构造字典
    for row in rows:
      column_values[row[col]]=1
    for value in column_values.keys():
      (set1,set2)=pideset(rows,col,value)
      p=float(len(set1))/len(rows)
      # 计算信息增益
      gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)
      if gain>best_gain and len(set1)>0 and len(set2)>0:
        best_gain=gain
        best_criteria=(col,value)
        best_sets=(set1,set2)
  # 如果划分的两个数据集熵小于原数据集,进一步划分它们
  if best_gain>0:
    trueBranch=build_tree(best_sets[0])
    falseBranch=build_tree(best_sets[1])
    return DecisionNode(col=best_criteria[0],value=best_criteria[1],
            tb=trueBranch,fb=falseBranch)
  # 如果划分的两个数据集熵不小于原数据集,停止划分
  else:
    return DecisionNode(results=uniquecounts(rows))
 
def print_tree(tree,indent=''):
  if tree.results!=None:
    print(str(tree.results))
  else:
    print(str(tree.col)+':'+str(tree.value)+'? ')
    print(indent+'T->',end='')
    print_tree(tree.tb,indent+' ')
    print(indent+'F->',end='')
    print_tree(tree.fb,indent+' ')
 
 
def getwidth(tree):
  if tree.tb==None and tree.fb==None: return 1
  return getwidth(tree.tb)+getwidth(tree.fb)
 
def getdepth(tree):
  if tree.tb==None and tree.fb==None: return 0
  return max(getdepth(tree.tb),getdepth(tree.fb))+1
 
 
def drawtree(tree,jpeg='tree.jpg'):
  w=getwidth(tree)*100
  h=getdepth(tree)*100+120
 
  img=Image.new('RGB',(w,h),(255,255,255))
  draw=ImageDraw.Draw(img)
 
  drawnode(draw,tree,w/2,20)
  img.save(jpeg,'JPEG')
 
def drawnode(draw,tree,x,y):
  if tree.results==None:
    # Get the width of each branch
    w1=getwidth(tree.fb)*100
    w2=getwidth(tree.tb)*100
 
    # Determine the total space required by this node
    left=x-(w1+w2)/2
    right=x+(w1+w2)/2
 
    # Draw the condition string
    draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0))
 
    # Draw links to the branches
    draw.line((x,y,left+w1/2,y+100),fill=(255,0,0))
    draw.line((x,y,right-w2/2,y+100),fill=(255,0,0))
   
    # Draw the branch nodes
    drawnode(draw,tree.fb,left+w1/2,y+100)
    drawnode(draw,tree.tb,right-w2/2,y+100)
  else:
    txt=' \n'.join(['%s:%d'%v for v in tree.results.items()])
    draw.text((x-20,y),txt,(0,0,0))

对测试数据进行分类(附带处理缺失数据)

def mdclassify(observation,tree):
  '''对缺失数据进行分类
   
  args:
  observation -- 发生信息缺失的数据项
  tree -- 训练完成的决策树
   
  返回代表该分类的结果字典
  '''
 
  # 判断数据是否到达叶节点
  if tree.results!=None:
    # 已经到达叶节点,返回结果result
    return tree.results
  else:
    # 对数据项的col列进行分析
    v=observation[tree.col]
 
    # 若col列数据缺失
    if v==None:
      #对tree的左右子树分别使用mdclassify,tr是左子树得到的结果字典,fr是右子树得到的结果字典
      tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)
 
      # 分别以结果占总数比例计算得到左右子树的权重
      tcount=sum(tr.values())
      fcount=sum(fr.values())
      tw=float(tcount)/(tcount+fcount)
      fw=float(fcount)/(tcount+fcount)
      result={}
 
      # 计算左右子树的加权平均
      for k,v in tr.items(): 
        result[k]=v*tw
      for k,v in fr.items(): 
        # fr的结果k有可能并不在tr中,在result中初始化k
        if k not in result: 
          result[k]=0 
        # fr的结果累加到result中 
        result[k]+=v*fw
      return result
 
    # col列没有缺失,继续沿决策树分类
    else:
      if isinstance(v,int) or isinstance(v,float):
        if v>=tree.value: branch=tree.tb
        else: branch=tree.fb
      else:
        if v==tree.value: branch=tree.tb
        else: branch=tree.fb
      return mdclassify(observation,branch)
 
tree=build_tree(my_data)
print(mdclassify(['google',None,'yes',None],tree))
print(mdclassify(['google','France',None,None],tree))

决策树剪枝

def prune(tree,mingain):
  '''对决策树进行剪枝
   
  args:
  tree -- 决策树
  mingain -- 最小信息增益
   
  返回
  '''
  # 修剪非叶节点
  if tree.tb.results==None:
    prune(tree.tb,mingain)
  if tree.fb.results==None:
    prune(tree.fb,mingain)
  #合并两个叶子节点
  if tree.tb.results!=None and tree.fb.results!=None:
    tb,fb=[],[]
    for v,c in tree.tb.results.items():
      tb+=[[v]]*c
    for v,c in tree.fb.results.items():
      fb+=[[v]]*c
    #计算熵减少情况
    delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2)
    #熵的增加量小于mingain,可以合并分支
    if delta<mingain:
      tree.tb,tree.fb=None,None
      tree.results=uniquecounts(tb+fb)
Python 相关文章推荐
将tensorflow的ckpt模型存储为npy的实例
Jul 09 Python
python hbase读取数据发送kafka的方法
Dec 27 Python
Python字典的核心底层原理讲解
Jan 24 Python
python爬虫 模拟登录人人网过程解析
Jul 31 Python
Python上下文管理器类和上下文管理器装饰器contextmanager用法实例分析
Nov 07 Python
利用python控制Autocad:pyautocad方式
Jun 01 Python
使用TensorBoard进行超参数优化的实现
Jul 06 Python
python实现感知机模型的示例
Sep 30 Python
Python安装Bs4的多种方法
Nov 28 Python
pycharm进入时每次都是insert模式的解决方式
Feb 05 Python
Django rest framework如何自定义用户表
Jun 09 Python
Pandas实现DataFrame的简单运算、统计与排序
Mar 31 Python
Python tkinter的grid布局及Text动态显示方法
Oct 11 #Python
对python requests的content和text方法的区别详解
Oct 11 #Python
使用pip发布Python程序的方法步骤
Oct 11 #Python
对python Tkinter Text的用法详解
Oct 11 #Python
python数据批量写入ScrolledText的优化方法
Oct 11 #Python
攻击者是如何将PHP Phar包伪装成图像以绕过文件类型检测的(推荐)
Oct 11 #Python
python中join()方法介绍
Oct 11 #Python
You might like
收集的DedeCMS一些使用经验
2007/03/17 PHP
深入PHP FTP类的详解
2013/06/13 PHP
php判断正常访问和外部访问的示例
2014/02/10 PHP
使用ThinkPHP+Uploadify实现图片上传功能
2014/06/26 PHP
jQuery 各种浏览器下获得日期区别
2008/12/22 Javascript
javascript跨域方法、原理以及出现问题解决方法(详解)
2015/08/06 Javascript
jquery UI Datepicker时间控件的使用方法(终结版)
2015/11/07 Javascript
输入法的回车与消息发送快捷键回车的冲突解决方法
2016/08/09 Javascript
让html元素随浏览器的大小自适应垂直居中的实现方法
2016/10/12 Javascript
微信小程序 POST请求(网络请求)详解及实例代码
2016/11/16 Javascript
使用bootstrap-paginator.js 分页来进行ajax 异步分页请求示例
2017/03/09 Javascript
微信JS SDK接入的几点注意事项(必看篇)
2017/06/23 Javascript
浅析JS中常用类型转换及运算符表达式
2017/07/23 Javascript
小程序实现图片移动缩放效果
2020/05/26 Javascript
基于jQuery拖拽事件的封装
2020/11/29 jQuery
在Python中使用poplib模块收取邮件的教程
2015/04/29 Python
Python环境下搭建属于自己的pip源的教程
2016/05/05 Python
Python装饰器知识点补充
2018/05/28 Python
python实现简单的文字识别
2018/11/27 Python
Windows 安装 Anaconda3+PyCharm的方法步骤
2019/06/13 Python
python使用递归的方式建立二叉树
2019/07/03 Python
python实现桌面托盘气泡提示
2019/07/29 Python
python函数修饰符@的使用方法解析
2019/09/02 Python
pytorch1.0中torch.nn.Conv2d用法详解
2020/01/10 Python
python matplotlib实现将图例放在图外
2020/04/17 Python
你应该知道的Python3.6、3.7、3.8新特性小结
2020/05/12 Python
方法名是否可以与构造器的名字相同
2012/06/04 面试题
办加油卡单位介绍信
2014/01/09 职场文书
马智宇婚礼主持词
2014/03/22 职场文书
书香家庭事迹材料
2014/05/09 职场文书
工作批评与自我批评范文
2014/10/16 职场文书
2014年应急管理工作总结
2014/11/26 职场文书
个人工作保证书
2015/02/28 职场文书
Mysql 性能监控及调优
2021/04/06 MySQL
手把手教你从零开始react+antd搭建项目
2021/06/03 Javascript
关于redisson缓存序列化几枚大坑说明
2021/08/04 Redis