Python尝试实现蒙特卡罗模拟期权定价


Posted in Python onApril 21, 2022

期权是一种合约,它赋予买方在未来某个时间点以特定价格买卖资产的权利。 这些被称为衍生品的合约的交易有多种原因,但一种常见的用法是来对冲当资产价格以不利方式变动,所产生的风险敞口。

期权,即买入或卖出的权利,也是有价格的。 Black Scholes 模型描述了一种确定期权公平价格的方法,但还有许多其他方法可以确定价格。

期权,及其价值

欧式期权只有在未来达到预定日期(称为到期日)后才能使用(或行使),可以用字母 T 表示。

看涨期权赋予期权持有人以已知价格购买的权利。 如果资产的到期价格(用 ST 表示)高于执行价格 K ,则看涨期权会赚钱,否则就一文不值。

CT=max(0,ST−K)

同样,看跌期权是出售资产的权利。 当资产在到期日价格ST低于执行价格K时,看跌期权会赚钱,否则就一文不值。

PT=max(0,K−ST)

以下是到期时看跌期权和看涨期权的收益图。 我们的资产价格是 x 轴,收益是 y 轴。

Python尝试实现蒙特卡罗模拟期权定价

风险中性估值

为了使用蒙特卡罗模拟为期权定价,我们使用风险中性估值,其中衍生品的公允价值是其未来收益的预期价值。

因此,在到期前的任何日期,用 t 表示,期权的价值是其到期收益预期的现值 T 。

Ct=PV(E[max(0,ST−K)])

Pt=PV(E[max(0,K−ST)])

在风险中性估值下,我们假设标的资产将平均获得无风险利率。 因此,要计算任何时间 t 的期权收益,我们要按该利率对收益进行贴现。 现在我们有一种计算现值 PV 的方法。

Python尝试实现蒙特卡罗模拟期权定价

上面的公式中,除了St ,所有这些变量都是已知的,因此St是我们的模拟将提供的。

为了给期权定价,我们将创建一个模拟,为资产 St 最终价格提供许多观察结果。 通过平均所有的回报,我们得到了对回报的期望值。

模拟资产价格

Black Scholes 模型中使用的股票价格行为模型假设我们有一个已知的波动性,我们有一个无风险利率,并且资产的价格遵循几何布朗运动。

几何布朗运动是一个随机过程,其中随机变量的对数服从正态分布。 这种类型的过程通过对数正态分布来分配价格。

所以现在我们有一个计算时间 T 时刻资产价格的方法:

Python尝试实现蒙特卡罗模拟期权定价

为此,我们需要知道:

r 是我们要贴现的无风险利率。 σ 是波动率,即股票回报的年化标准差。 (T-t) 给了我们年化的到期时间。 例如,对于 30 天选项,这将是 30/365=0.082... S 是在时间 t 标的资产的价格。 ϵ 是我们的随机值。 它的分布必须是标准正态(均值为 0.0,标准差为 1.0)

期权定价

为了在模拟过程中为期权定价,我们生成资产可能在到期时的许多价格,计算每个生成价格的期权收益,将它们平均,然后对最终价值进行贴现。

在创建完整模拟之前,我们将通过一个包含10次运行的小示例。假设我们有一个具有以下价值的资产:S = 100.00 美元和 σ = 20%,我们想为半年到期的看涨期权定价,执行价为 110.00 美元,我们的无风险利率是 1%。

随机变量 资产价格 收益 贴现收益
1.3620 120.64 10.64 10.58
-0.7784 89.13 0.00 0.00
-0.9408 87.11 0.00 0.00
0.2227 102.69 0.00 0.00
-0.0364 98.99 0.00 0.00
-1.4303 81.28 0.00 0.00
-0.8306 88.47 0.00 0.00
1.5155 123.28 13.28 13.21
-1.5679 79.71 0.00 0.00
-1.6718 78.55 0.00 0.00

将折扣收益值平均,得出我们的看涨期权价格为 2.38 美元。 我们执行的模拟越多,价格就越准确。

现在我们可以看到模拟如何生成价格,让我们构建一个可以为期权定价的小型 Python 脚本,看看它是否与真实情况相符。 让我们看一下实际的例子。

为真实期权定价

在下图中,我们有一个谷歌看涨期权的报价,行使价为 860.00 美元,将于 2013 年 9 月 21 日到期。我们还可以看到它的最后交易价格是14.50 美元。这个例子给了我们尝试定价时,期权的一个目标价格。

Python尝试实现蒙特卡罗模拟期权定价

此处未指定的是波动性、无风险利率、当前的股票价格。 波动率是一个相当复杂的话题,因此就本文而言,我们将假设我们知道该特定期权的波动率为 20.76%。而股票当前价格可以通过查看各种来源找到,为857.29 美元。

对于无风险利率,我们可以使用与我们选择的到期时间相同的美国 LIBOR 利率; 我们的期权在大约三周后到期,由于没有三周利率,我们将使用两周利率来近似,即 0.14%。

接下来是Python代码的实现,首先我们将写下我们将如何生成资产价格。

def generate_asset_price(S,v,r,T):
    return S * exp((r - 0.5 * v**2) * T + v * sqrt(T) * gauss(0,1.0))

我们知道所有的输入值,所以我们可以像这样设定它们:

S = 857.29 # underlying price
v = 0.2076 # vol of 20.76%
r = 0.0014 # rate of 0.14%
T = (datetime.date(2013,9,21) - datetime.date(2013,9,3)).days / 365.0

print generate_asset_price(S,v,r,T)
>>> 862.1783726682384

现在我们需要能够计算这个生成价格的回报。 回想一下之前我们说过看涨期权在到期时价值是 ST-K 或 0,我们将其表示为一个函数,并应用于我们生成的资产价格。

def call_payoff(S_T, K):
    return max(S_T - K, 0.0)

print call_payoff(862.18, 860)
>>> 2.1799999999

完整的模拟

现在让我们将各模块代组合,并为 Google 期权定价。

import datetime
from random import gauss
from math import exp, sqrt

def generate_asset_price(S,v,r,T):
    return S * exp((r - 0.5 * v**2) * T + v * sqrt(T) * gauss(0,1.0))

def call_payoff(S_T,K):
    return max(0.0,S_T-K)

S = 857.29 # underlying price
v = 0.2076 # vol of 20.76%
r = 0.0014 # rate of 0.14%
T = (datetime.date(2013,9,21) - datetime.date(2013,9,3)).days / 365.0
K = 860.
simulations = 90000
payoffs = []
discount_factor = math.exp(-r * T)

for i in xrange(simulations):
    S_T = generate_asset_price(S,v,r,T)
    payoffs.append(
        call_payoff(S_T, K)
    )

price = discount_factor * (sum(payoffs) / float(simulations))
print 'Price: %.4f' % price

程序运行结果如下,这与我们在市场上观察到的此 Google 期权的价格相匹配。

Price: 14.5069

需要注意的是,我们刚刚计算的谷歌期权实际上是一个美式期权,我们只是把它定价成欧式期权,没有考虑期权可以提前行权的可能性,尽管如此,我们仍然得出了正确的价格。

这是因为,非派息股票(例如文中举例的 Google)的美式看涨期权的价格与欧式看涨期权的价格相同。理论上,当股票不支付股息时,提前行权并不是最佳选择。 如果期权永远不会提前行权,那么美式期权的价格可以像欧式期权一样进行计算。

到此这篇关于Python利用蒙特卡罗模拟期权定价的文章就介绍到这了!


Tags in this post...

Python 相关文章推荐
python分析网页上所有超链接的方法
May 08 Python
解决Shell执行python文件,传参空格引起的问题
Oct 30 Python
python 内置函数汇总详解
Sep 16 Python
python写一个随机点名软件的实例
Nov 28 Python
用python3读取python2的pickle数据方式
Dec 25 Python
新手入门学习python Numpy基础操作
Mar 02 Python
xadmin使用formfield_for_dbfield函数过滤下拉表单实例
Apr 07 Python
python多进程下的生产者和消费者模型
May 07 Python
基于python实现操作redis及消息队列
Aug 27 Python
python语言实现贪吃蛇游戏
Nov 13 Python
python爬虫利用代理池更换IP的方法步骤
Feb 21 Python
使用Python通过企业微信应用给企业成员发消息
Apr 18 Python
Python matplotlib绘制条形统计图 处理多个实验多组观测值
python绘制简单直方图(质量分布图)的方法
Python绘制散乱的点构成的图的方法
Python可视化动图组件ipyvizzu绘制惊艳的可视化动图
Python探索生命起源 matplotlib细胞自动机动画演示
Apr 21 #Python
使用python绘制横竖条形图
python多次执行绘制条形图
Apr 20 #Python
You might like
使用php shell命令合并图片的代码
2011/06/23 PHP
ajax 的post方法实例(带循环)
2011/07/04 PHP
解析php入库和出库
2013/06/25 PHP
destoon二次开发常用数据库操作
2014/06/21 PHP
PHP简单选择排序算法实例
2015/01/26 PHP
PHP+Javascript实现在线拍照功能实例
2015/07/18 PHP
Laravel中任务调度console使用方法小结
2017/05/07 PHP
encode脚本和normal脚本混用的问题与解决方法
2007/03/08 Javascript
JavaScript动态插入script的基本思路及实现函数
2013/11/11 Javascript
jQuery向上遍历DOM树之parents(),parent(),closest()之间的区别
2013/12/02 Javascript
javascript中的undefined和not defined区别示例介绍
2014/02/26 Javascript
写出高效jquery代码的19条指南
2014/03/19 Javascript
详解Node.Js如何处理post数据
2016/09/19 Javascript
bootstrap提示标签、提示框实现代码
2016/12/28 Javascript
基于JS实现仿百度百家主页的轮播图效果
2017/03/06 Javascript
Angularjs 手写日历的实现代码(不用插件)
2017/10/18 Javascript
帝国cms首页列表页实现点赞功能
2017/10/30 Javascript
5 种JavaScript编码规范
2018/01/30 Javascript
vuex实现登录状态的存储,未登录状态不允许浏览的方法
2018/03/09 Javascript
使用 UniApp 实现小程序的微信登录功能
2020/06/09 Javascript
解决vue 使用setTimeout,离开当前路由setTimeout未销毁的问题
2020/07/21 Javascript
python数据结构之二叉树的统计与转换实例
2014/04/29 Python
python文件读写操作与linux shell变量命令交互执行的方法
2015/01/14 Python
Python数据分析之真实IP请求Pandas详解
2016/11/18 Python
Python中类型检查的详细介绍
2017/02/13 Python
Python加密方法小结【md5,base64,sha1】
2017/07/13 Python
详解Django+Uwsgi+Nginx 实现生产环境部署
2018/11/06 Python
Python实用工具FuckIt.py介绍
2019/07/02 Python
python  文件的基本操作 菜中菜功能的实例代码
2019/07/17 Python
django ajax发送post请求的两种方法
2020/01/05 Python
python实现excel公式格式化的示例代码
2020/12/23 Python
Pam & Gela官网:美国性感前卫女装品牌
2018/07/19 全球购物
垃圾回收的优点和原理。并考虑2种回收机制
2016/10/16 面试题
检察机关个人对照检查材料
2014/09/15 职场文书
2014年电教工作总结
2014/12/19 职场文书
2016年小学中秋节活动总结
2016/04/05 职场文书