Python尝试实现蒙特卡罗模拟期权定价


Posted in Python onApril 21, 2022

期权是一种合约,它赋予买方在未来某个时间点以特定价格买卖资产的权利。 这些被称为衍生品的合约的交易有多种原因,但一种常见的用法是来对冲当资产价格以不利方式变动,所产生的风险敞口。

期权,即买入或卖出的权利,也是有价格的。 Black Scholes 模型描述了一种确定期权公平价格的方法,但还有许多其他方法可以确定价格。

期权,及其价值

欧式期权只有在未来达到预定日期(称为到期日)后才能使用(或行使),可以用字母 T 表示。

看涨期权赋予期权持有人以已知价格购买的权利。 如果资产的到期价格(用 ST 表示)高于执行价格 K ,则看涨期权会赚钱,否则就一文不值。

CT=max(0,ST−K)

同样,看跌期权是出售资产的权利。 当资产在到期日价格ST低于执行价格K时,看跌期权会赚钱,否则就一文不值。

PT=max(0,K−ST)

以下是到期时看跌期权和看涨期权的收益图。 我们的资产价格是 x 轴,收益是 y 轴。

Python尝试实现蒙特卡罗模拟期权定价

风险中性估值

为了使用蒙特卡罗模拟为期权定价,我们使用风险中性估值,其中衍生品的公允价值是其未来收益的预期价值。

因此,在到期前的任何日期,用 t 表示,期权的价值是其到期收益预期的现值 T 。

Ct=PV(E[max(0,ST−K)])

Pt=PV(E[max(0,K−ST)])

在风险中性估值下,我们假设标的资产将平均获得无风险利率。 因此,要计算任何时间 t 的期权收益,我们要按该利率对收益进行贴现。 现在我们有一种计算现值 PV 的方法。

Python尝试实现蒙特卡罗模拟期权定价

上面的公式中,除了St ,所有这些变量都是已知的,因此St是我们的模拟将提供的。

为了给期权定价,我们将创建一个模拟,为资产 St 最终价格提供许多观察结果。 通过平均所有的回报,我们得到了对回报的期望值。

模拟资产价格

Black Scholes 模型中使用的股票价格行为模型假设我们有一个已知的波动性,我们有一个无风险利率,并且资产的价格遵循几何布朗运动。

几何布朗运动是一个随机过程,其中随机变量的对数服从正态分布。 这种类型的过程通过对数正态分布来分配价格。

所以现在我们有一个计算时间 T 时刻资产价格的方法:

Python尝试实现蒙特卡罗模拟期权定价

为此,我们需要知道:

r 是我们要贴现的无风险利率。 σ 是波动率,即股票回报的年化标准差。 (T-t) 给了我们年化的到期时间。 例如,对于 30 天选项,这将是 30/365=0.082... S 是在时间 t 标的资产的价格。 ϵ 是我们的随机值。 它的分布必须是标准正态(均值为 0.0,标准差为 1.0)

期权定价

为了在模拟过程中为期权定价,我们生成资产可能在到期时的许多价格,计算每个生成价格的期权收益,将它们平均,然后对最终价值进行贴现。

在创建完整模拟之前,我们将通过一个包含10次运行的小示例。假设我们有一个具有以下价值的资产:S = 100.00 美元和 σ = 20%,我们想为半年到期的看涨期权定价,执行价为 110.00 美元,我们的无风险利率是 1%。

随机变量 资产价格 收益 贴现收益
1.3620 120.64 10.64 10.58
-0.7784 89.13 0.00 0.00
-0.9408 87.11 0.00 0.00
0.2227 102.69 0.00 0.00
-0.0364 98.99 0.00 0.00
-1.4303 81.28 0.00 0.00
-0.8306 88.47 0.00 0.00
1.5155 123.28 13.28 13.21
-1.5679 79.71 0.00 0.00
-1.6718 78.55 0.00 0.00

将折扣收益值平均,得出我们的看涨期权价格为 2.38 美元。 我们执行的模拟越多,价格就越准确。

现在我们可以看到模拟如何生成价格,让我们构建一个可以为期权定价的小型 Python 脚本,看看它是否与真实情况相符。 让我们看一下实际的例子。

为真实期权定价

在下图中,我们有一个谷歌看涨期权的报价,行使价为 860.00 美元,将于 2013 年 9 月 21 日到期。我们还可以看到它的最后交易价格是14.50 美元。这个例子给了我们尝试定价时,期权的一个目标价格。

Python尝试实现蒙特卡罗模拟期权定价

此处未指定的是波动性、无风险利率、当前的股票价格。 波动率是一个相当复杂的话题,因此就本文而言,我们将假设我们知道该特定期权的波动率为 20.76%。而股票当前价格可以通过查看各种来源找到,为857.29 美元。

对于无风险利率,我们可以使用与我们选择的到期时间相同的美国 LIBOR 利率; 我们的期权在大约三周后到期,由于没有三周利率,我们将使用两周利率来近似,即 0.14%。

接下来是Python代码的实现,首先我们将写下我们将如何生成资产价格。

def generate_asset_price(S,v,r,T):
    return S * exp((r - 0.5 * v**2) * T + v * sqrt(T) * gauss(0,1.0))

我们知道所有的输入值,所以我们可以像这样设定它们:

S = 857.29 # underlying price
v = 0.2076 # vol of 20.76%
r = 0.0014 # rate of 0.14%
T = (datetime.date(2013,9,21) - datetime.date(2013,9,3)).days / 365.0

print generate_asset_price(S,v,r,T)
>>> 862.1783726682384

现在我们需要能够计算这个生成价格的回报。 回想一下之前我们说过看涨期权在到期时价值是 ST-K 或 0,我们将其表示为一个函数,并应用于我们生成的资产价格。

def call_payoff(S_T, K):
    return max(S_T - K, 0.0)

print call_payoff(862.18, 860)
>>> 2.1799999999

完整的模拟

现在让我们将各模块代组合,并为 Google 期权定价。

import datetime
from random import gauss
from math import exp, sqrt

def generate_asset_price(S,v,r,T):
    return S * exp((r - 0.5 * v**2) * T + v * sqrt(T) * gauss(0,1.0))

def call_payoff(S_T,K):
    return max(0.0,S_T-K)

S = 857.29 # underlying price
v = 0.2076 # vol of 20.76%
r = 0.0014 # rate of 0.14%
T = (datetime.date(2013,9,21) - datetime.date(2013,9,3)).days / 365.0
K = 860.
simulations = 90000
payoffs = []
discount_factor = math.exp(-r * T)

for i in xrange(simulations):
    S_T = generate_asset_price(S,v,r,T)
    payoffs.append(
        call_payoff(S_T, K)
    )

price = discount_factor * (sum(payoffs) / float(simulations))
print 'Price: %.4f' % price

程序运行结果如下,这与我们在市场上观察到的此 Google 期权的价格相匹配。

Price: 14.5069

需要注意的是,我们刚刚计算的谷歌期权实际上是一个美式期权,我们只是把它定价成欧式期权,没有考虑期权可以提前行权的可能性,尽管如此,我们仍然得出了正确的价格。

这是因为,非派息股票(例如文中举例的 Google)的美式看涨期权的价格与欧式看涨期权的价格相同。理论上,当股票不支付股息时,提前行权并不是最佳选择。 如果期权永远不会提前行权,那么美式期权的价格可以像欧式期权一样进行计算。

到此这篇关于Python利用蒙特卡罗模拟期权定价的文章就介绍到这了!


Tags in this post...

Python 相关文章推荐
从零学python系列之数据处理编程实例(二)
May 22 Python
Python创建日历实例
Aug 21 Python
对django中render()与render_to_response()的区别详解
Oct 16 Python
使用pyqt5 tablewidget 单元格设置正则表达式
Dec 13 Python
Python数据存储之 h5py详解
Dec 26 Python
Django Channel实时推送与聊天的示例代码
Apr 30 Python
解决pyinstaller打包运行程序时出现缺少plotly库问题
Jun 02 Python
浅谈pytorch中的BN层的注意事项
Jun 23 Python
解决导入django_filters不成功问题No module named 'django_filter'
Jul 15 Python
Python面向对象实现方法总结
Aug 12 Python
Pyinstaller打包Scrapy项目的实现步骤
Sep 22 Python
Python使用Opencv实现边缘检测以及轮廓检测的实现
Dec 31 Python
Python matplotlib绘制条形统计图 处理多个实验多组观测值
python绘制简单直方图(质量分布图)的方法
Python绘制散乱的点构成的图的方法
Python可视化动图组件ipyvizzu绘制惊艳的可视化动图
Python探索生命起源 matplotlib细胞自动机动画演示
Apr 21 #Python
使用python绘制横竖条形图
python多次执行绘制条形图
Apr 20 #Python
You might like
用javascript实现兼容IE7的类库 IE7_0_9.zip提供下载
2007/08/08 Javascript
jquery 表单下所有元素的隐藏
2009/07/25 Javascript
js模拟点击事件实现代码
2012/11/06 Javascript
js返回上一页并刷新代码整理
2012/12/21 Javascript
js使用eval解析json(js中使用json)
2014/01/17 Javascript
一个字符串反转函数可实现字符串倒序
2014/09/15 Javascript
javascript 动态创建表格的2种方法总结
2015/03/04 Javascript
jQuery使用animate创建动画用法实例
2015/08/07 Javascript
基于Bootstrap重置输入框内容按钮插件
2016/05/12 Javascript
JSONP原理及简单实现
2016/06/08 Javascript
JS两种类型的表单提交方法实例分析
2016/11/28 Javascript
浅谈Vue的基本应用
2016/12/27 Javascript
微信小程序之拖拽排序(代码分享)
2017/01/21 Javascript
三种方式实现瀑布流布局
2017/02/10 Javascript
服务端预渲染之Nuxt(使用篇)
2019/04/08 Javascript
js实现掷骰子小游戏
2019/10/24 Javascript
JavaScript实现复选框全选和取消全选
2020/11/20 Javascript
精确查找PHP WEBSHELL木马的方法(1)
2011/04/12 Python
Python脚本实现代码行数统计代码分享
2015/03/10 Python
Python多进程库multiprocessing中进程池Pool类的使用详解
2017/11/24 Python
python回调函数中使用多线程的方法
2017/12/25 Python
解决sublime+python3无法输出中文的问题
2018/12/12 Python
使用pandas把某一列的字符值转换为数字的实例
2019/01/29 Python
python logging模块书写日志以及日志分割详解
2019/07/22 Python
Ranorex通过Python将报告发送到邮箱的方法
2020/01/12 Python
Python2与Python3的区别详解
2020/02/09 Python
Python3 中sorted() 函数的用法
2020/03/24 Python
J2EE面试题
2016/03/14 面试题
2014年音乐教师工作总结
2014/12/03 职场文书
医生个人年终总结
2015/02/28 职场文书
2015年感恩父亲节演讲稿
2015/03/19 职场文书
2015年毕业生个人自荐书
2015/03/24 职场文书
2015年学校政教处工作总结
2015/05/26 职场文书
2016年教师政治思想表现评语
2015/12/02 职场文书
Nginx搭建rtmp直播服务器实现代码
2021/03/31 Servers
使用canvas对video视频某一刻截图功能
2021/09/25 HTML / CSS