详解Java实现数据结构之并查集


Posted in Java/Android onJune 23, 2021

​一、什么是并查集

对于一种数据结构,肯定是有自己的应用场景和特性,那么并查集是处理什么问题的呢?

并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题,常常在使用中以森林来表示。在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

你可能还有点迷糊并查集能怎么玩,看完这篇然后回头看这两个问题(分别杭电1232和杭电1272)。

问题1:

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

这个问题很容易,给定的关系看看需要合并多少次就知道最少的建设道路数量。

问题二:

小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。

详解Java实现数据结构之并查集

这个问题也很容易了,根据关系集合进行合如果两个元素已经属于一个集合,那就说明不满足要求啦。

二、并查集解析

通过上面介绍,相信你已经清楚并查集就是解决集合中一些元素的合并和查询问题,现在就带你解析这个算法。

2.1、初始化

开始时候森林中每个元素没有任何操作,它们之间是相互独立的。我们通常会使用数组来表示这个森林(数组下标对应第几个元素),在初始化的时候数组中的各个值为-1,表示各自自己是一个集合(各自为王),你可能会问为啥是-1而不是一个其他的数,那是因为用负数可以代表这个元素是某个集合的根,然后它的权值表示集合中元素的个数。

详解Java实现数据结构之并查集

2.2、并 union(int a,int b)

这里合并,并没有你想象的直接合并那么简单,这里合并是合并a所在的集合和b所在的集合,但在操作层面a,b可能并不是根节点,所以也要先判断一下。

为了便于理解,这里罗列一下最初操作可能的情况,初始时候各个元素都是独立的集合,那么直接a指向b(或者b指向a)即arr[a]=b,同时为了表示这个集合有多少个,原本-1的b再次-1.即arr[b]=-2.表示以b为父根的集合节点有|-2|个。例如进行union(1,4),union(5,7)操作之后如图所示:

详解Java实现数据结构之并查集

正常情况的union(int a,int b),假设我们就是a合并到b上,把b当成父集合来看。a、b都可能是叶子节点,也可能是根节点。

此时你可以先分别找到a,b的父节点fa,fb(这个根可能是它自己),然后合并fa和fb两个节点,例如上面如果union(1,5)那么其实就是等价union(4,7)。

详解Java实现数据结构之并查集

为什么不直接操作a,b而是要找到他们的父亲进行操作?

原因1是因为a,b可能是叶子节点,其值是正的表示已经有父亲了,如果直接操作会使其与原来的集合分离开。另外集合中的数量(负数)也不能有效叠加。

详解Java实现数据结构之并查集

原因2是因为合并的时候如果合并如果a,b是非根节点操作,可能会造成这个树的深度太大,不利于集合a中的查询效率。

详解Java实现数据结构之并查集

2.3、查 search(int a)

查询,其实就是查询这个节点的根节点是啥(也称代表元),这个过程也有点类似递归的过程,叶子节点值如果为正,那么就继续查找这个值得位置的结果,一直到值为负数的时候说明找到根节点,可以直接返回。

不过在查询的过程中可以顺便路径优化,这样在频繁查询能够大大降低时间复杂度。

三、优化

你以为上面的就是并查集的全部?不不不,并查集还有不少需要掌握嘞,估计细心的人可能也会发现一些问题。

你可能会有疑问:

如何查看a,b是否在同一个集合?

查看是否在一个集合,只需要查看节点根祖先的结果是否相同即可。因为只有根的数值是负的,而其他都是正数表示指向的元素。所以只需要一直寻找直到不为正数进行比较即可!

a,b合并,究竟是a的祖先合并在b的祖先上,还是b的祖先合并在a上?

这里会遇到两种情况,这个选择也是非常重要的。你要弄明白一点:树的高度+1的化那么整个元素查询的效率都会降低!

所以我们通常是:小树指向大树(或者低树指向高树),这个使得查询效率能够增加!

详解Java实现数据结构之并查集

当然,在高度和数量的选择上,还需要你自己选择和考虑。

查找途中能不能路径压缩:

每次查询,自下向上。当我们调用递归的时候,可以顺便压缩路径(将当前数组的值等于递归返回的根节点的值),我们查找一个元素只需要直接找到它的祖先,所以当它距离祖先近那么下次查询就很快。并且压缩路径的代价并不大!

试想一下,如果一个分支的深度为1000,不压缩路径那么这个分支每个节点平均查找次数为500,压缩一次下次再查找就是1次。

学会路径压缩,你基本可以秒杀大部分并查集的题。

详解Java实现数据结构之并查集

四、代码实现

并查集实现起来较为简单,直接贴代码!

import java.util.Scanner;
public class DisjointSet {
    static int tree[]=new int[100000];//假设有500个值
    public DisjointSet()    {set(this.tree);}
    public DisjointSet(int tree[]) 
    {
        this.tree=tree;
        set(this.tree);
    }
  //初始化所有都是-1 有两个好处,这样他们指向-1说明是自己,
  //第二,-1代表当前森林有-(-1)个
    public void set(int a[])
    {
        int l=a.length;
        for(int i=0;i<l;i++)
        {
            a[i]=-1;
        }
    }
    public int search(int a)//返回头节点的数值
    {
        if(tree[a]>0)//说明是子节点
        {
            return tree[a]=search(tree[a]);//路径压缩
        }
        else
            return a;
    }
    public int value(int a)//返回a所在树的大小(个数)
    {
        if(tree[a]>0)
        {
            return value(tree[a]);
        }
        else
            return -tree[a];
    }
    public void union(int a,int b)//表示 a,b所在的树合并
    {
        int a1=search(a);//a根
        int b1=search(b);//b根
        if(a1==b1) {System.out.println(a+"和"+b+"已经在一棵树上");}
        else {
        if(tree[a1]<tree[b1])//这个是负数,为了简单减少计算,不在调用value函数
        {
            tree[a1]+=tree[b1];//个数相加  注意是负数相加
            tree[b1]=a1;       //b树成为a的子树,直接指向a;
        }
        else
        {
            tree[b1]+=tree[a1];//个数相加  注意是负数相加
            tree[a1]=b1;       //b树成为a的子树,直接指向a;
        }
        }
    }
    public static void main(String[] args)
    {       
        DisjointSet d=new DisjointSet();
        d.union(1,2);
        d.union(3,4);
        d.union(5,6);
        d.union(1,6);

        d.union(22,24);
        d.union(3,26);
        d.union(36,24);
        System.out.println(d.search(6));    //头
        System.out.println(d.value(6));     //大小
        System.out.println(d.search(22));   //头
        System.out.println(d.value(22));     //大小
    }
}

五、结语

并查集属于简单但是很高效率的数据结构。在集合中经常会遇到。如果不采用并查集而传统暴力效率太低,而不被采纳。

以上就是详解Java实现数据结构之并查集的详细内容,更多关于Java 数据结构 并查集的资料请关注三水点靠木其它相关文章!

Java/Android 相关文章推荐
Feign调用全局异常处理解决方案
Jun 24 Java/Android
Spring Boot 启动、停止、重启、状态脚本
Jun 26 Java/Android
Java中PriorityQueue实现最小堆和最大堆的用法
Jun 27 Java/Android
如何给HttpServletRequest增加消息头
Jun 30 Java/Android
Java图书管理系统,课程设计必用(源码+文档)
Jun 30 Java/Android
Java Kafka 消费积压监控的示例代码
Jul 01 Java/Android
IDEA2021.2配置docker如何将springboot项目打成镜像一键发布部署
Sep 25 Java/Android
Spring-cloud Config Server的3种配置方式
Sep 25 Java/Android
Jpa Specification如何实现and和or同时使用查询
Nov 23 Java/Android
Java详细解析==和equals的区别
Apr 07 Java/Android
详解Spring Bean的配置方式与实例化
Jun 10 Java/Android
ConditionalOnProperty配置swagger不生效问题及解决
Jun 14 Java/Android
解决SpringCloud Feign传对象参数调用失败的问题
Jun 23 #Java/Android
详解Java实现设计模式之责任链模式
Jun 23 #Java/Android
Spring boot应用启动后首次访问很慢的解决方案
Java并发编程之详解CyclicBarrier线程同步
如何解决springcloud feign 首次调用100%失败的问题
分析设计模式之模板方法Java实现
基于Java的MathML转图片的方法(示例代码)
Jun 23 #Java/Android
You might like
改德生G88 - 加装等响度低音提升电路
2021/03/02 无线电
PHP 的 __FILE__ 常量
2007/01/15 PHP
PHP基础知识回顾
2012/08/16 PHP
PHP 利用AJAX获取网页并输出的实现代码(Zjmainstay)
2012/08/31 PHP
php中is_null,empty,isset,unset 的区别详细介绍
2013/04/28 PHP
PHP 安全检测代码片段(分享)
2013/07/05 PHP
PHP实现检测客户端是否使用代理服务器及其匿名级别
2015/01/07 PHP
php实现在新浪云中使用imagick生成缩略图并上传的方法
2016/09/26 PHP
PHP实现表单提交时去除斜杠的方法
2016/12/26 PHP
php获取网站根目录物理路径的几种方法(推荐)
2017/03/04 PHP
PHP htmlspecialchars() 函数实例代码及用法大全
2018/09/18 PHP
javascript实现unicode和字符的互相转换
2007/07/18 Javascript
JQuery 构建客户/服务分离的链接模型中Table分页代码效率初探
2010/01/22 Javascript
微信小程序教程系列之设置标题栏和导航栏(7)
2020/06/29 Javascript
Bootstrap滚动监听组件scrollspy.js使用方法详解
2017/07/20 Javascript
vue-cli 3.x 修改dist路径的方法
2018/09/19 Javascript
vue 解决computed修改data数据的问题
2019/11/06 Javascript
[40:13]Ti4 冒泡赛第二天 iG vs NEWBEE 2
2014/07/15 DOTA
[03:01]完美盛典趣味短片 DOTA2年度最佳&拉胯英雄
2019/12/07 DOTA
在ironpython中利用装饰器执行SQL操作的例子
2015/05/02 Python
深入理解python try异常处理机制
2016/06/01 Python
利用 Monkey 命令操作屏幕快速滑动
2016/12/07 Python
Python 自动刷博客浏览量实例代码
2017/06/14 Python
Python数据分析中Groupby用法之通过字典或Series进行分组的实例
2017/12/08 Python
Python爬虫设置代理IP的方法(爬虫技巧)
2018/03/04 Python
pandas groupby 分组取每组的前几行记录方法
2018/04/20 Python
python2和python3在处理字符串上的区别详解
2019/05/29 Python
python创建学生管理系统
2019/11/22 Python
如何在mac环境中用python处理protobuf
2019/12/25 Python
python爬虫中PhantomJS加载页面的实例方法
2020/11/12 Python
浅谈盘点5种基于Python生成的个性化语音方法
2021/02/05 Python
怎样写好自我鉴定
2013/12/04 职场文书
学生爱国演讲稿
2014/01/14 职场文书
党员批评与自我批评思想汇报
2014/10/08 职场文书
励志正能量20句:送给所有为梦想拼搏的人
2019/11/11 职场文书
纯CSS3实现div按照顺序出入效果
2021/07/15 HTML / CSS