python实现马丁策略的实例详解


Posted in Python onJanuary 15, 2021

马丁策略本来是一种赌博方法,但在投资界应用也很广泛,不过对于投资者来说马丁策略过于简单,所以本文将其改进并使得其在震荡市中获利,以下说明如何实现马丁策略。

策略

逢跌加仓,间隔由自己决定,每次加仓是当前仓位的一倍。
连续跌两次卖出,且卖出一半仓位。
如果爆仓则全仓卖出止损。
初始持仓设置为10%~25%,则可进行2到3次补仓。

初始化马丁策略类属性

def __init__(self,startcash, start, end):
 self.cash = startcash #初始化现金
 self.hold = 0 #初始化持仓金额
 self.holdper = self.hold /startcash #初始化仓位
 self.log = [] #初始化日志
 self.cost = 0 #成本价 
 self.stock_num = 0 #股票数量
 self.starttime = start #起始时间
 self.endtime = end #终止时间
 self.quantlog = [] #交易量记录
 self.earn = [] #总资产记录
 self.num_log = []
 self.droplog = [0]

为了记录每次买卖仓位的变化初始化了各种列表。

交易函数

首先导入需要的模块

import pandas as pd 
import numpy as np
import tushare as ts 
import matplotlib.pyplot as plt
def buy(self, currentprice, count):

 self.cash -= currentprice*count
 self.log.append('buy')
 self.hold += currentprice*count
 self.holdper = self.hold / (self.cash+ self.hold) 
 self.stock_num += count
 self.cost = self.hold / self.stock_num
 self.quantlog.append(count//100)
 print('买入价:%.2f,手数:%d,现在成本价:%.2f,现在持仓:%.2f,现在筹码:%d' %(currentprice ,count//100, self.cost, self.holdper, self.stock_num//100))
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)
 self.droplog = [0]
 
 def sell(self, currentprice, count):
 self.cash += currentprice*count
 self.stock_num -= count
 self.log.append('sell')
 self.hold = self.stock_num*self.cost
 self.holdper = self.hold / (self.cash + self.hold)
 #self.cost = self.hold / self.stock_num
 print('卖出价:%.2f,手数:%d,现在成本价:%.2f,现在持仓:%.2f,现在筹码:%d' %(currentprice ,count//100, self.cost, self.holdper, self.stock_num//100))
 self.quantlog.append(count//100)    
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)
 
 def holdstock(self,currentprice):
 self.log.append('hold')
 #print('持有,现在仓位为:%.2f。现在成本:%.2f' %(self.holdper,self.cost))
 self.quantlog.append(0)
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)

持仓成本的计算方式是利用总持仓金额除以总手数,卖出时不改变持仓成本。持有则是不做任何操作只记录日志

数据接口

def get_stock(self, code):
 df=ts.get_k_data(code,autype='qfq',start= self.starttime ,end= self.endtime)
 df.index=pd.to_datetime(df.date)
 df=df[['open','high','low','close','volume']]
 return df

数据接口使用tushare,也可使用pro接口,到官网注册领取token。

token = '输入你的token'
pro = ts.pro_api()
ts.set_token(token)
 def get_stock_pro(self, code):
 code = code + '.SH'
 df = pro.daily(ts_code= code, start_date = self.starttime, end_date= self.endtime)
 return df

数据结构:

python实现马丁策略的实例详解

回测函数

def startback(self, data, everyChange, accDropday):
 """
 回测函数
 """
 for i in range(len(data)):
  if i < 1:
  continue
  if i < accDropday:
  drop = backtesting.accumulateVar(everyChange, i, i)
  #print('现在累计涨跌幅度为:%.2f'%(drop))
  self.martin(data[i], data[i-1], drop, everyChange,i)
  elif i < len(data)-2:
  drop = backtesting.accumulateVar(everyChange, i, accDropday)
  #print('现在累计涨跌幅度为:%.2f'%(drop))
  self.martin(data[i],data[i-1], drop, everyChange,i)
  else:
  if self.stock_num > 0:
   self.sell(data[-1],self.stock_num)
  else: self.holdstock(data[i])

因为要计算每日涨跌幅,要计算差分,所以第一天的数据不能计算在for循环中跳过,accDropday是累计跌幅的最大计算天数,用来控制入场,当累计跌幅大于某个数值且仓位为0%时可再次入场。以下是入场函数:

def enter(self, currentprice,ex_price,accuDrop):
 if accuDrop < -0.01:#and ex_price > currentprice:
  count = (self.cash+self.hold) *0.24 // currentprice //100 * 100
  print('再次入场')
  self.buy(currentprice, count)
 else: self.holdstock(currentprice)

入场仓位选择0.24则可进行两次抄底,如果抄底间隔为7%可承受最大跌幅为14%。

策略函数

def martin(self, currentprice, ex_price, accuDrop,everyChange,i):
 diff = (ex_price - currentprice)/ex_price
 self.droplog.append(diff)

 if sum(self.droplog) <= 0:
  self.droplog = [0]
 
 if self.stock_num//100 > 1:
  if sum(self.droplog) >= 0.04:
  if self.holdper*2 < 0.24:
   count =(self.cash+self.hold) *(0.25-self.holdper) // currentprice //100 * 100
   self.buy(currentprice, count)
  elif self.holdper*2 < 1 and (self.hold/currentprice)//100 *100 > 0 and backtesting.computeCon(self.log) < 5:
   self.buy(currentprice, (self.hold/currentprice)//100 *100)
   
  else: self.sell(currentprice, self.stock_num//100 *100);print('及时止损')

  elif (everyChange[i-2] < 0 and everyChange[i-1] <0 and self.cost < currentprice):# or (everyChange[i-1] < -0.04 and self.cost < currentprice):
   
  if (self.stock_num > 0) and ((self.stock_num*(1/2)//100*100) > 0):
   
   self.sell(currentprice, self.stock_num*(1/2)//100*100 )

   #print("现在累计涨跌幅为: %.3f" %(accuDrop))
  elif self.stock_num == 100: self.sell(currentprice, 100)
  else: self.holdstock(currentprice)
  else: self.holdstock(currentprice)
 else: self.enter(currentprice,ex_price,accuDrop)

首先构建了droplog专门用于计算累计涨跌幅,当其大于0时重置为0,每次购买后也将其重置为0。当跌幅大于0.04则买入,一下为流程图(因为作图软件Visustin为试用版所以有水印,两个图可以结合来看):

python实现马丁策略的实例详解
python实现马丁策略的实例详解

此策略函数可以改成其他策略甚至是反马丁,因为交易函数可以通用。

作图和输出结果

buylog = pd.Series(broker.log)
close = data.copy()
buy = np.zeros(len(close))
sell = np.zeros(len(close))
for i in range(len(buylog)):
 if buylog[i] == 'buy':
 buy[i] = close[i]
 elif buylog[i] == 'sell':
 sell[i] = close[i]

buy = pd.Series(buy)
sell = pd.Series(sell)
buy.index = close.index
sell.index = close.index
quantlog = pd.Series(broker.quantlog)
quantlog.index = close.index
earn = pd.Series(broker.earn)
earn.index = close.index

buy = buy.loc[buy > 0]
sell = sell.loc[sell>0]
plt.plot(close)
plt.scatter(buy.index,buy,label = 'buy')
plt.scatter(sell.index,sell, label = 'sell')
plt.title('马丁策略')
plt.legend()

#画图
plt.rcParams['font.sans-serif'] = ['SimHei']

fig, (ax1, ax2, ax3) = plt.subplots(3,figsize=(15,8))

ax1.plot(close)
ax1.scatter(buy.index,buy,label = 'buy',color = 'red')
ax1.scatter(sell.index,sell, label = 'sell',color = 'green')
ax1.set_ylabel('Price')
ax1.grid(True)
ax1.legend()

ax1.xaxis_date()
ax2.bar(quantlog.index, quantlog, width = 5)
ax2.set_ylabel('Volume')

ax2.xaxis_date()
ax2.grid(True)
ax3.xaxis_date()
ax3.plot(earn)
ax3.set_ylabel('总资产包括浮盈')
plt.show()

python实现马丁策略的实例详解

python实现马丁策略的实例详解

交易日志

到此这篇关于python实现马丁策略的实例详解的文章就介绍到这了,更多相关python马丁策略内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用Python中的线程进行网络编程的入门教程
Apr 15 Python
Python对数据库操作
Mar 28 Python
通过Python 获取Android设备信息的轻量级框架
Dec 18 Python
Python把csv数据写入list和字典类型的变量脚本方法
Jun 15 Python
Python中的元组介绍
Jan 28 Python
python实现浪漫的烟花秀
Jan 30 Python
python matplotlib实现双Y轴的实例
Feb 12 Python
python输入多行字符串的方法总结
Jul 02 Python
python异常触发及自定义异常类解析
Aug 06 Python
python实现画循环圆
Nov 23 Python
python3安装OCR识别库tesserocr过程图解
Apr 02 Python
详解win10下pytorch-gpu安装以及CUDA详细安装过程
Jan 28 Python
pycharm 多行批量缩进和反向缩进快捷键介绍
Jan 15 #Python
基于Python的接口自动化读写excel文件的方法
Jan 15 #Python
PyCharm 解决找不到新打开项目的窗口问题
Jan 15 #Python
python爬取微博评论的实例讲解
Jan 15 #Python
pycharm 复制代码出现空格的解决方式
Jan 15 #Python
pycharm 实现复制一行的快捷键
Jan 15 #Python
pycharm 快速解决python代码冲突的问题
Jan 15 #Python
You might like
PHP memcache扩展的三种安装方法
2009/04/26 PHP
PHP 事件机制(2)
2011/03/23 PHP
探讨:如何使用PhpDocumentor生成文档
2013/06/25 PHP
Thinkphp5+uploadify实现的文件上传功能示例
2018/05/26 PHP
PHP自定义错误处理的方法分析
2018/12/19 PHP
PHP实现一个轻量级容器的方法
2019/01/28 PHP
js类中获取外部函数名的方法与代码
2007/09/12 Javascript
javascript实现的在当前窗口中漂浮框的代码
2010/03/15 Javascript
js如何取消事件冒泡
2013/09/23 Javascript
关于jquery的多个选择器的使用示例
2013/10/18 Javascript
js实现收缩菜单效果实例代码
2013/10/30 Javascript
javascript与cookie 的问题详解
2013/11/11 Javascript
jQuery学习笔记之jQuery原型属性和方法
2014/06/09 Javascript
jquery ajax分页插件的简单实现
2016/01/27 Javascript
jQuery1.9+中删除了live以后的替代方法
2016/06/17 Javascript
基于Bootstrap实现下拉菜单项和表单导航条(两个菜单项,一个下拉菜单和登录表单导航条)
2016/07/22 Javascript
JS版微信6.0分享接口用法分析
2016/10/13 Javascript
jQuery Mobile漏洞会有跨站脚本攻击风险
2017/02/12 Javascript
运用jQuery写的验证表单(实例讲解)
2017/07/06 jQuery
简单实现jQuery上传图片显示预览功能
2020/06/29 jQuery
VueJS 集成 Medium Editor的示例代码 (自定义编辑器按钮)
2017/08/24 Javascript
详解使用React进行组件库开发
2018/02/06 Javascript
快速解决brew安装特定版本flow的问题
2018/05/17 Javascript
vue实现歌手列表字母排序下拉滚动条侧栏排序实时更新
2019/05/14 Javascript
Python库urllib与urllib2主要区别分析
2014/07/13 Python
Python中tell()方法的使用详解
2015/05/24 Python
python创建临时文件夹的方法
2015/07/06 Python
python中异常捕获方法详解
2017/03/03 Python
Python类的继承、多态及获取对象信息操作详解
2019/02/28 Python
Django使用redis缓存服务器的实现代码示例
2019/04/28 Python
使用Python实现企业微信的自动打卡功能
2019/04/30 Python
Django缓存Cache使用详解
2020/11/30 Python
英国知名的皮手套品牌:Dents
2016/11/13 全球购物
九月份红领巾广播稿
2014/01/22 职场文书
让世界充满爱演讲稿
2014/05/24 职场文书
Oracle 数据仓库ETL技术之多表插入语句的示例详解
2021/04/12 Oracle