python实现马丁策略的实例详解


Posted in Python onJanuary 15, 2021

马丁策略本来是一种赌博方法,但在投资界应用也很广泛,不过对于投资者来说马丁策略过于简单,所以本文将其改进并使得其在震荡市中获利,以下说明如何实现马丁策略。

策略

逢跌加仓,间隔由自己决定,每次加仓是当前仓位的一倍。
连续跌两次卖出,且卖出一半仓位。
如果爆仓则全仓卖出止损。
初始持仓设置为10%~25%,则可进行2到3次补仓。

初始化马丁策略类属性

def __init__(self,startcash, start, end):
 self.cash = startcash #初始化现金
 self.hold = 0 #初始化持仓金额
 self.holdper = self.hold /startcash #初始化仓位
 self.log = [] #初始化日志
 self.cost = 0 #成本价 
 self.stock_num = 0 #股票数量
 self.starttime = start #起始时间
 self.endtime = end #终止时间
 self.quantlog = [] #交易量记录
 self.earn = [] #总资产记录
 self.num_log = []
 self.droplog = [0]

为了记录每次买卖仓位的变化初始化了各种列表。

交易函数

首先导入需要的模块

import pandas as pd 
import numpy as np
import tushare as ts 
import matplotlib.pyplot as plt
def buy(self, currentprice, count):

 self.cash -= currentprice*count
 self.log.append('buy')
 self.hold += currentprice*count
 self.holdper = self.hold / (self.cash+ self.hold) 
 self.stock_num += count
 self.cost = self.hold / self.stock_num
 self.quantlog.append(count//100)
 print('买入价:%.2f,手数:%d,现在成本价:%.2f,现在持仓:%.2f,现在筹码:%d' %(currentprice ,count//100, self.cost, self.holdper, self.stock_num//100))
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)
 self.droplog = [0]
 
 def sell(self, currentprice, count):
 self.cash += currentprice*count
 self.stock_num -= count
 self.log.append('sell')
 self.hold = self.stock_num*self.cost
 self.holdper = self.hold / (self.cash + self.hold)
 #self.cost = self.hold / self.stock_num
 print('卖出价:%.2f,手数:%d,现在成本价:%.2f,现在持仓:%.2f,现在筹码:%d' %(currentprice ,count//100, self.cost, self.holdper, self.stock_num//100))
 self.quantlog.append(count//100)    
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)
 
 def holdstock(self,currentprice):
 self.log.append('hold')
 #print('持有,现在仓位为:%.2f。现在成本:%.2f' %(self.holdper,self.cost))
 self.quantlog.append(0)
 self.earn.append(self.cash+ currentprice*self.stock_num)
 self.num_log.append(self.stock_num)

持仓成本的计算方式是利用总持仓金额除以总手数,卖出时不改变持仓成本。持有则是不做任何操作只记录日志

数据接口

def get_stock(self, code):
 df=ts.get_k_data(code,autype='qfq',start= self.starttime ,end= self.endtime)
 df.index=pd.to_datetime(df.date)
 df=df[['open','high','low','close','volume']]
 return df

数据接口使用tushare,也可使用pro接口,到官网注册领取token。

token = '输入你的token'
pro = ts.pro_api()
ts.set_token(token)
 def get_stock_pro(self, code):
 code = code + '.SH'
 df = pro.daily(ts_code= code, start_date = self.starttime, end_date= self.endtime)
 return df

数据结构:

python实现马丁策略的实例详解

回测函数

def startback(self, data, everyChange, accDropday):
 """
 回测函数
 """
 for i in range(len(data)):
  if i < 1:
  continue
  if i < accDropday:
  drop = backtesting.accumulateVar(everyChange, i, i)
  #print('现在累计涨跌幅度为:%.2f'%(drop))
  self.martin(data[i], data[i-1], drop, everyChange,i)
  elif i < len(data)-2:
  drop = backtesting.accumulateVar(everyChange, i, accDropday)
  #print('现在累计涨跌幅度为:%.2f'%(drop))
  self.martin(data[i],data[i-1], drop, everyChange,i)
  else:
  if self.stock_num > 0:
   self.sell(data[-1],self.stock_num)
  else: self.holdstock(data[i])

因为要计算每日涨跌幅,要计算差分,所以第一天的数据不能计算在for循环中跳过,accDropday是累计跌幅的最大计算天数,用来控制入场,当累计跌幅大于某个数值且仓位为0%时可再次入场。以下是入场函数:

def enter(self, currentprice,ex_price,accuDrop):
 if accuDrop < -0.01:#and ex_price > currentprice:
  count = (self.cash+self.hold) *0.24 // currentprice //100 * 100
  print('再次入场')
  self.buy(currentprice, count)
 else: self.holdstock(currentprice)

入场仓位选择0.24则可进行两次抄底,如果抄底间隔为7%可承受最大跌幅为14%。

策略函数

def martin(self, currentprice, ex_price, accuDrop,everyChange,i):
 diff = (ex_price - currentprice)/ex_price
 self.droplog.append(diff)

 if sum(self.droplog) <= 0:
  self.droplog = [0]
 
 if self.stock_num//100 > 1:
  if sum(self.droplog) >= 0.04:
  if self.holdper*2 < 0.24:
   count =(self.cash+self.hold) *(0.25-self.holdper) // currentprice //100 * 100
   self.buy(currentprice, count)
  elif self.holdper*2 < 1 and (self.hold/currentprice)//100 *100 > 0 and backtesting.computeCon(self.log) < 5:
   self.buy(currentprice, (self.hold/currentprice)//100 *100)
   
  else: self.sell(currentprice, self.stock_num//100 *100);print('及时止损')

  elif (everyChange[i-2] < 0 and everyChange[i-1] <0 and self.cost < currentprice):# or (everyChange[i-1] < -0.04 and self.cost < currentprice):
   
  if (self.stock_num > 0) and ((self.stock_num*(1/2)//100*100) > 0):
   
   self.sell(currentprice, self.stock_num*(1/2)//100*100 )

   #print("现在累计涨跌幅为: %.3f" %(accuDrop))
  elif self.stock_num == 100: self.sell(currentprice, 100)
  else: self.holdstock(currentprice)
  else: self.holdstock(currentprice)
 else: self.enter(currentprice,ex_price,accuDrop)

首先构建了droplog专门用于计算累计涨跌幅,当其大于0时重置为0,每次购买后也将其重置为0。当跌幅大于0.04则买入,一下为流程图(因为作图软件Visustin为试用版所以有水印,两个图可以结合来看):

python实现马丁策略的实例详解
python实现马丁策略的实例详解

此策略函数可以改成其他策略甚至是反马丁,因为交易函数可以通用。

作图和输出结果

buylog = pd.Series(broker.log)
close = data.copy()
buy = np.zeros(len(close))
sell = np.zeros(len(close))
for i in range(len(buylog)):
 if buylog[i] == 'buy':
 buy[i] = close[i]
 elif buylog[i] == 'sell':
 sell[i] = close[i]

buy = pd.Series(buy)
sell = pd.Series(sell)
buy.index = close.index
sell.index = close.index
quantlog = pd.Series(broker.quantlog)
quantlog.index = close.index
earn = pd.Series(broker.earn)
earn.index = close.index

buy = buy.loc[buy > 0]
sell = sell.loc[sell>0]
plt.plot(close)
plt.scatter(buy.index,buy,label = 'buy')
plt.scatter(sell.index,sell, label = 'sell')
plt.title('马丁策略')
plt.legend()

#画图
plt.rcParams['font.sans-serif'] = ['SimHei']

fig, (ax1, ax2, ax3) = plt.subplots(3,figsize=(15,8))

ax1.plot(close)
ax1.scatter(buy.index,buy,label = 'buy',color = 'red')
ax1.scatter(sell.index,sell, label = 'sell',color = 'green')
ax1.set_ylabel('Price')
ax1.grid(True)
ax1.legend()

ax1.xaxis_date()
ax2.bar(quantlog.index, quantlog, width = 5)
ax2.set_ylabel('Volume')

ax2.xaxis_date()
ax2.grid(True)
ax3.xaxis_date()
ax3.plot(earn)
ax3.set_ylabel('总资产包括浮盈')
plt.show()

python实现马丁策略的实例详解

python实现马丁策略的实例详解

交易日志

到此这篇关于python实现马丁策略的实例详解的文章就介绍到这了,更多相关python马丁策略内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
写了个监控nginx进程的Python脚本
May 10 Python
Python实现的石头剪子布代码分享
Aug 22 Python
python对数组进行反转的方法
May 20 Python
Python实现读写sqlite3数据库并将统计数据写入Excel的方法示例
Aug 07 Python
简单谈谈python中的lambda表达式
Jan 19 Python
简单谈谈Python的pycurl模块
Apr 07 Python
Python利用itchat库向好友或者公众号发消息的实例
Feb 21 Python
在python中利用try..except来代替if..else的用法
Dec 19 Python
python3 字符串知识点学习笔记
Feb 08 Python
Python实现鼠标自动在屏幕上随机移动功能
Mar 14 Python
Python如何将装饰器定义为类
Jul 30 Python
python自动化操作之动态验证码、滑动验证码的降噪和识别
Aug 30 Python
pycharm 多行批量缩进和反向缩进快捷键介绍
Jan 15 #Python
基于Python的接口自动化读写excel文件的方法
Jan 15 #Python
PyCharm 解决找不到新打开项目的窗口问题
Jan 15 #Python
python爬取微博评论的实例讲解
Jan 15 #Python
pycharm 复制代码出现空格的解决方式
Jan 15 #Python
pycharm 实现复制一行的快捷键
Jan 15 #Python
pycharm 快速解决python代码冲突的问题
Jan 15 #Python
You might like
PDO版本问题 Invalid parameter number: no parameters were bound
2013/01/06 PHP
php文件夹与文件目录操作函数介绍
2013/09/09 PHP
PHP仿微信多图片预览上传实例代码
2016/09/13 PHP
php获取flash尺寸详细数据的方法
2016/11/12 PHP
从sohu弄下来的flash中展示图片的代码
2007/04/27 Javascript
分别用marquee和div+js实现首尾相连循环滚动效果,仅3行代码
2011/09/21 Javascript
jquery插件开发之实现google+圈子选择功能
2014/03/10 Javascript
用js闭包的方法实现多点标注冒泡示例
2014/05/29 Javascript
将HTML格式的String转化为HTMLElement的实现方法
2014/08/07 Javascript
理解javascript定时器中的setTimeout与setInterval
2016/02/23 Javascript
使用jquery.qrcode.min.js实现中文转化二维码
2016/03/11 Javascript
基于JavaScript实现购物网站商品放大镜效果
2016/09/06 Javascript
深入理解Node.js中的进程管理
2017/03/13 Javascript
js实现下拉框效果(select)
2017/03/28 Javascript
Angular 4依赖注入学习教程之InjectToken的使用(八)
2017/06/04 Javascript
基于Vue实现拖拽功能
2020/07/29 Javascript
学习JS中的DOM节点以及操作
2018/04/30 Javascript
ES2020 已定稿,真实场景案例分析
2020/05/25 Javascript
python简单实现旋转图片的方法
2015/05/30 Python
python脚本设置系统时间的两种方法
2016/02/21 Python
python实现上传下载文件功能
2020/11/19 Python
快速解决pyqt5窗体关闭后子线程不同时退出的问题
2019/06/19 Python
使用Python来做一个屏幕录制工具的操作代码
2020/01/18 Python
HTML5中的Article和Section元素认识及使用
2013/03/22 HTML / CSS
整理HTML5的一些新特性与Canvas的常用属性
2016/01/29 HTML / CSS
最好的商品表达自己:Cafepress
2019/09/04 全球购物
澳洲CFL商城:CHEMIST FOR LESS(中文)
2021/02/28 全球购物
Linux中如何用命令创建目录
2016/12/02 面试题
大学生应聘导游自荐信
2014/06/02 职场文书
道路施工安全责任书
2014/07/24 职场文书
父亲去世追悼词
2015/06/23 职场文书
小王子读书笔记
2015/06/29 职场文书
文艺委员竞选稿
2015/11/19 职场文书
导游词之无锡唐城
2019/12/12 职场文书
我们认为中短波广播场强仪的最佳组合
2022/04/05 无线电
vue3种table表格选项个数的控制方法
2022/04/14 Vue.js