python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比


Posted in Python onApril 15, 2019

前言

还有一年多就要毕业了,不准备考研的我要着手准备找实习及工作了,所以一直没有更新。

因为Python是自学不久,发现很久不用的话以前学过的很多方法就忘了,今天打算使用简单的BeautifulSoup和一点正则表达式的方法来爬一下top100电影,当然,我们并不仅是使用爬虫爬取数据,这样的话,数据中存在很多的对人有用的信息则被忽略了。所以,爬取数据只是开头,对这些数据根据意愿进行分析,或许能有额外的收获。

注:本人还是Python菜鸟,若有错误欢迎指正

本次我们爬取时光网(http://www.mtime.com/top/movie/top100/)上的电影排名,该网站网页结构较简单,爬取方便。

步骤:

1.爬取时光网top100电影,华语top100电影,日本top100电影,韩国top100电影的排名情况,电影名字,电影简介,评分及评价人数

2. 将爬取数据保存为csv格式后,取出并使用matplotlib绘图库分析对比评论人数一项

 

3.将结果图像保存

步骤一:爬取

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

由上图可知电影信息在 li 节点内,而且发现第一页与后面网页地址不同,需要进行判断。

第一页地址为:http://www.mtime.com/top/movie/top100/

第二页地址为:http://www.mtime.com/top/movie/top100/index-2.html

第三页及后面地址均与第二页相似,仅网址的数字相应增加,所以更改数字即可爬取

import requests
from bs4 import BeautifulSoup
import re
import csv

#定义爬取函数
def get_infos(htmls, csvname):
 #信息头
 headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36'
 }
 #flag在写入文件时判断是否为首行
 flag = True
 #判断第一页网址,第二页及其后的网址
 for i in range(10):
 if i == 0:
  html = htmls
 else:
  html = htmls + 'index-{}.html'.format(str(i+1))
 res = requests.get(html, headers=headers)
 soup = BeautifulSoup(res.text, 'lxml')
 alls = soup.select('#asyncRatingRegion > li') #选取网页的li节点的内容
 #对节点内容进行循环遍历
 for one in alls:
  paiming = one.div.em.string #排名
  names = str(one.select('div.mov_pic > a')) #电影名称并将列表字符串化
  name = re.findall('.*?title="(.*?)">.*?', names, re.S)[0] #使用正则表达式提取内容
  content = str(one.select('div.mov_con > p.mt3')) #评论
  realcontent = re.findall('.*?mt3">(.*?)</p>', content, re.S)[0] #同上
  p1 = one.find(name='span', attrs={'class': 'total'}, text=re.compile('\d')) #评分在两个节点,
  p2 = one.find(name='span', attrs={'class': 'total2'}, text=re.compile('.\d'))
  #判断评分是否为空
  if p1 and p2 != None:
  p1 = p1.string
  p2 = p2.string
  else:
  p1 = 'no'
  p2 = ' point'
  point = p1 + p2 + '分'
  numbers = one.find(text=re.compile('评分')) #评分数量
  # 保存为csv
  csvnames = 'C:\\Users\lenovo\Desktop\\' + csvname + '.csv'
  with open(csvnames, 'a+', encoding='utf-8') as f:
  writer = csv.writer(f)
  if flag:
   writer.writerow(('paiming', 'name', 'realcontent', 'point', 'numbers'))
  writer.writerow((paiming, name, realcontent, point, numbers))
  flag = False

#调用函数
Japan_html = 'http://www.mtime.com/top/movie/top100_japan/'
csvname1 = 'Japan_top'
get_infos(Japan_html, csvname1)

Korea_html = 'http://www.mtime.com/top/movie/top100_south_korea/'
csvname2 = 'Korea_top'
get_infos(Korea_html, csvname2)

这里要注意的是要有些电影没有评分,为了预防出现这种情况,所以要进行判断

注:上述没有添加华语电影top100及所有电影top100的代码,可自行添加。

爬取结果部分内容如下:

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

步骤二和三:导入数据并使用matplotlib分析,保存分析图片

import csv
from matplotlib import pyplot as plt
#中文乱码处理
plt.rcParams['font.sans-serif'] =['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False

def read_csv(csvname):
 csvfile_name = 'C:\\Users\lenovo\Desktop\\' + csvname + '.csv'
 #打开文件并存入列表
 with open(csvfile_name,encoding='utf-8') as f:
 reader = csv.reader(f)
 header_row = next(reader)
 name = []
 for row in reader:
  name.append(row)
 #取列表中非空元素
 real = []
 for i in name:
 if len(i) != 0:
  real.append(i)
 #去除中文并将数据转换为整形
 t = 0
 ss = []
 for j in real:
 ss.append(int(real[t][4][:-5]))
 t += 1
 return ss

#绘制对比图形
All_plt = read_csv('bs1') #调用函数
China_plt = read_csv('China_top')
Japan_plt = read_csv('Japan_top')
Korea_plt = read_csv('Korea_top')
shu = list(range(1,101))
fig = plt.figure(dpi=128, figsize=(10, 6)) #设置图形界面
plt.subplot(2,1,1)
plt.bar(shu ,All_plt, align='center', color='green', label='World', alpha=0.6) #绘制条图形,align指定横坐标在中心,颜色,alpha指定透明度
plt.bar(shu ,China_plt, color='indigo', label='China', alpha=0.4) #绘制图形,颜色, label属性用于后面使用legend方法时显示图例标签
plt.bar(shu ,Japan_plt, color='blue', label='Japan',alpha=0.5) #绘制图形,颜色,
plt.bar(shu ,Korea_plt, color='yellow', label='Korea',alpha=0.5) #绘制图形,颜色,
plt.ylabel('评论数', fontsize=10) #纵坐标题目,字体大小
plt.title('不同地区的电影top100对比', fontsize=10) #图形标题
plt.legend(loc='best')

plt.subplot(2,1,2)
plt.plot(shu , All_plt, linewidth=1, c='green', label='World') #绘制图形,指定线宽,颜色,label属性用于后面使用legend方法时显示图例标签
plt.plot(shu ,China_plt, linewidth=1, c='indigo', label='China', ls='-.') #绘制图形,指定线宽,颜色,
plt.plot(shu ,Japan_plt, linewidth=1, c='green', label='Japan', ls='--') #绘制图形,指定线宽,颜色,
plt.plot(shu ,Korea_plt, linewidth=1, c='red', label='Korea', ls=':') #绘制图形,指定线宽,颜色,
plt.ylabel('comments', fontsize=10) #纵坐标题目,字体大小
plt.title('The different top 100 movies\'comments comparison', fontsize=10) #图形标题
plt.legend(loc='best')
'''
plt.legend()——loc参数选择
'best' : 0, #自动选择最好位置 
 'upper right' : 1,
 'upper left' : 2,
 'lower left' : 3,
 'lower right' : 4,
 'right' : 5,
 'center left' : 6,
 'center right' : 7,
 'lower center' : 8,
 'upper center' : 9,
 'center' : 10,
 '''
plt.savefig('C:\\Users\lenovo\Desktop\\bs1.png') #保存图片
plt.show() #显示图形

这里需要注意的是读取保存的csv文件并将数据传入列表时,每一个电影数据又是一个列表(先称为有效列表),每个有效列表前后都有一个空列表,所以需要将空列表删除,才能进行下一步

评分数据为string类型且有中文,所以进行遍历将中文去除并转换为int。

最后保存的对比分析图片:

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

本次使用的爬取方法、爬取内容、分析内容都很容易,但我在完成过程中,发现自己还是会出现各种各样的问题,说明还有很多需要改善进步的地方。

同时欢迎大家指正。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python3中常用的处理时间和实现定时任务的方法的介绍
Apr 07 Python
Python的语言类型(详解)
Jun 24 Python
Python Socket实现简单TCP Server/client功能示例
Aug 05 Python
TensorFlow变量管理详解
Mar 10 Python
pytorch构建网络模型的4种方法
Apr 13 Python
flask-restful使用总结
Dec 04 Python
python地震数据可视化详解
Jun 18 Python
Python英文文章词频统计(14份剑桥真题词频统计)
Oct 13 Python
Python编译成.so文件进行加密后调用的实现
Dec 23 Python
Python实现CNN的多通道输入实例
Jan 17 Python
pytorch dataloader 取batch_size时候出现bug的解决方式
Feb 20 Python
Python装饰器结合递归原理解析
Jul 02 Python
Python Datetime模块和Calendar模块用法实例分析
Apr 15 #Python
Python如何处理大数据?3个技巧效率提升攻略(推荐)
Apr 15 #Python
Python利用lxml模块爬取豆瓣读书排行榜的方法与分析
Apr 15 #Python
Python常见读写文件操作实例总结【文本、json、csv、pdf等】
Apr 15 #Python
10招!看骨灰级Pythoner玩转Python的方法
Apr 15 #Python
Python后台开发Django会话控制的实现
Apr 15 #Python
浅析Python 实现一个自动化翻译和替换的工具
Apr 14 #Python
You might like
PHP开发负载均衡指南
2010/07/17 PHP
PHP goto语句简介和使用实例
2014/03/11 PHP
php检查字符串中是否有外链的方法
2015/07/29 PHP
简单的php购物车代码
2020/06/05 PHP
one.php 多项目、函数库、类库 统一为一个版本的方法
2020/08/24 PHP
Javascript实例教程(19) 使用HoTMetal(5)
2006/12/23 Javascript
统一接口:为FireFox添加IE的方法和属性的js代码
2007/03/25 Javascript
JS实多级联动下拉菜单类,简单实现省市区联动菜单!
2007/05/03 Javascript
几个比较实用的JavaScript 测试及效验工具
2010/04/18 Javascript
javascript 跨浏览器开发经验总结(五) js 事件
2010/05/19 Javascript
Mac地址验证的javascript代码
2013/11/09 Javascript
jQuery控制TR显示隐藏的三种常用方法
2014/08/21 Javascript
基于jquery的文字向上跑动类似跑马灯的效果
2014/09/22 Javascript
Angular中的Promise对象($q介绍)
2015/03/03 Javascript
jQuery中 prop() attr()使用详解
2015/05/19 Javascript
关于javascript中dataset的问题小结
2015/11/16 Javascript
完美实现bootstrap分页查询
2015/12/09 Javascript
Kindeditor在线文本编辑器如何过滤HTML
2016/04/14 Javascript
浅谈javascript中的数据类型转换
2016/12/27 Javascript
Bootstrap3 多选和单选框(checkbox)
2016/12/29 Javascript
jQuery EasyUI 折叠面板accordion的使用实例(分享)
2017/12/25 jQuery
学习JS中的DOM节点以及操作
2018/04/30 Javascript
vue项目创建并引入饿了么elementUI组件的步骤
2019/04/11 Javascript
JavaScript实现简单随机点名器
2019/11/21 Javascript
[03:42]2014DOTA2国际邀请赛 第三日比赛排位扑朔迷离
2014/07/12 DOTA
[04:02]2014DOTA2国际邀请赛 BBC每日综述中国战队将再度登顶
2014/07/21 DOTA
python常用函数与用法示例
2019/07/02 Python
Python中filter与lambda的结合使用详解
2019/12/24 Python
python读取多层嵌套文件夹中的文件实例
2020/02/27 Python
什么是python的id函数
2020/06/11 Python
HTML5 canvas基本绘图之图形变换
2016/06/27 HTML / CSS
英国历史最悠久的DJ设备供应商:DJ Finance、DJ Warehouse、The DJ Shop
2019/09/04 全球购物
领导干部个人整改措施落实情况汇报
2014/10/29 职场文书
推荐信范文大全
2015/03/27 职场文书
2016年清明节寄语
2015/12/04 职场文书
古诗文之爱国名句(77句)
2019/09/24 职场文书