Python 绘图库 Matplotlib 入门教程


Posted in Python onApril 19, 2018

运行环境

由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何安装Matplotlib请参见这里:Matplotlib Installing。

笔者推荐大家通过pip的方式进行安装,具体方法如下:

sudo pip3 install matplotlib

本文中的源码和测试数据可以在这里获取:matplotlib_tutorial

本文的代码示例会用到另外一个Python库:NumPy。建议读者先对NumPy有一定的熟悉,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程。

本文的代码在如下环境中测试:

  • Apple OS X 10.13
  • Python 3.6.3 matplotlib 2.1.1
  • numpy 1.13.3

介绍

Matplotlib适用于各种环境,包括:

  • Python脚本
  • IPython shell Jupyter notebook
  • Web应用服务器
  • 用户图形界面工具包

使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。并且,可以非常轻松的实现定制。

入门代码示例

下面我们先看一个最简单的代码示例,让我们感受一下Matplotlib是什么样的:

# test.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.plot(data)
plt.show()

这段代码的主体逻辑只有三行,但是它却绘制出了一个非常直观的线性图,如下所示:

Python 绘图库 Matplotlib 入门教程

对照着这个线形图,我们来讲解一下三行代码的逻辑:

  • 通过np.arange(100, 201)生成一个[100, 200]之间的整数数组,它的值是:[100, 101, 102, … , 200]
  • 通过matplotlib.pyplot将其绘制出来。很显然,绘制出来的值对应了图中的纵坐标(y轴)。而matplotlib本身为我们设置了图形的横坐标(x轴):[0, 100],因为我们刚好有100个数值
  • 通过plt.show()将这个图形显示出来

这段代码非常的简单,运行起来也是一样。如果你已经有了本文的运行环境,将上面的代码保存到一个文本文件中(或者通过Github获取本文的源码),然后通过下面的命令就可以在你自己的电脑上看到上面的图形了:

python3 test.py

注1:后面的教程中,我们会逐步讲解如何定制图中的每一个细节。例如:坐标轴,图形,着色,线条样式,等等。

注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。

一次绘制多个图形

有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。

可以通过下面的方法创建多个图形:

多个figure

可以简单的理解为一个figure就是一个图形窗口。matplotlib.pyplot会有一个默认的figure,我们也可以通过plt.figure()创建更多个。如下面的代码所示:

# figure.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.plot(data)
data2 = np.arange(200, 301)
plt.figure()
plt.plot(data2)
plt.show()

这段代码绘制了两个窗口的图形,它们各自是一个不同区间的线形图,如下所示:

Python 绘图库 Matplotlib 入门教程

注:初始状态这两个窗口是完全重合的。

多个subplot

有些情况下,我们是希望在同一个窗口显示多个图形。此时就这可以用多个subplot。下面是一段代码示例:

# subplot.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.subplot(2, 1, 1)
plt.plot(data)
data2 = np.arange(200, 301)
plt.subplot(2, 1, 2)
plt.plot(data2)
plt.show()

这段代码中,除了subplot函数之外都是我们熟悉的内容。subplot函数的前两个参数指定了subplot数量,即:它们是以矩阵的形式来分割当前图形,两个整数分别指定了矩阵的行数和列数。而第三个参数是指矩阵中的索引。

因此,下面这行代码指的是:2行1列subplot中的第1个subplot。

plt.subplot(2, 1, 1)

下面这行代码指的是:2行1列subplot中的第2个subplot。

plt.subplot(2, 1, 2)

所以这段代码的结果是这个样子:

Python 绘图库 Matplotlib 入门教程

subplot函数的参数不仅仅支持上面这种形式,还可以将三个整数(10之内的)合并一个整数。例如:2, 1, 1可以写成2112, 1, 2可以写成212

因此,下面这段代码的结果是一样的:

import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.subplot(211)
plt.plot(data)
data2 = np.arange(200, 301)
plt.subplot(212)
plt.plot(data2)
plt.show()

subplot函数的详细说明参见这里:matplotlib.pyplot.subplot

常用图形示例

Matplotlib可以生成非常多的图形式样,多到令人惊叹的地步。大家可以在这里:Matplotlib Gallery 感受一下。

本文作为第一次的入门教程,我们先来看看最常用的一些图形的绘制。

线性图

前面的例子中,线性图的横轴的点都是自动生成的,而我们很可能希望主动设置它。另外,线条我们可能也希望对其进行定制。看一下下面这个例子:

# plot.py
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [3, 6, 9], '-r')
plt.plot([1, 2, 3], [2, 4, 9], ':g')
plt.show()

这段代码可以让我们得到这样的图形:

Python 绘图库 Matplotlib 入门教程

这段代码说明如下:

plot函数的第一个数组是横轴的值,第二个数组是纵轴的值,所以它们一个是直线,一个是折线; 最后一个参数是由两个字符构成的,分别是线条的样式和颜色。前者是红色的直线,后者是绿色的点线。关于样式和颜色的说明请参见plot函数的API Doc:matplotlib.pyplot.plot

散点图

scatter函数用来绘制散点图。同样,这个函数也需要两组配对的数据指定x和y轴的坐标。下面是一段代码示例:

# scatter.py
import matplotlib.pyplot as plt
import numpy as np
N = 20
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='r', s=100, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='g', s=200, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='b', s=300, alpha=0.5)
plt.show()

这段代码说明如下:

这幅图包含了三组数据,每组数据都包含了20个随机坐标的位置 参数c表示点的颜色,s是点的大小,alpha是透明度

这段代码绘制的图形如下所示:

Python 绘图库 Matplotlib 入门教程

scatter函数的详细说明参见这里:matplotlib.pyplot.scatter

饼状图

pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。

# pie.py
import matplotlib.pyplot as plt
import numpy as np
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
data = np.random.rand(7) * 100
plt.pie(data, labels=labels, autopct='%1.1f%%')
plt.axis('equal')
plt.legend()
plt.show()

这段代码说明如下:

data是一组包含7个数据的随机数值 图中的标签通过labels来指定 autopct指定了数值的精度格式 plt.axis('equal')设置了坐标轴大小一致 plt.legend()指明要绘制图例(见下图的右上角)

这段代码输出的图形如下所示:

Python 绘图库 Matplotlib 入门教程

pie函数的详细说明参见这里:matplotlib.pyplot.pie

条形图

bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。

下面是一个代码示例:

# bar.py
import matplotlib.pyplot as plt
import numpy as np
N = 7
x = np.arange(N)
data = np.random.randint(low=0, high=100, size=N)
colors = np.random.rand(N * 3).reshape(N, -1)
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
plt.title("Weekday Data")
plt.bar(x, data, alpha=0.8, color=colors, tick_label=labels)
plt.show()

这段代码说明如下:

这幅图展示了一组包含7个随机数值的结果,每个数值是[0, 100]的随机数 它们的颜色也是通过随机数生成的。np.random.rand(N * 3).reshape(N, -1)表示先生成21(N x 3)个随机数,然后将它们组装成7行,那么每行就是三个数,这对应了颜色的三个组成部分。如果不理解这行代码,请先学习一下Python 机器学习库 NumPy 教程 title指定了图形的标题,labels指定了标签,alpha是透明度

这段代码输出的图形如下所示:

Python 绘图库 Matplotlib 入门教程

bar函数的详细说明参见这里:matplotlib.pyplot.bar

直方图

hist函数用来绘制直方图。直方图看起来是条形图有些类似。但它们的含义是不一样的,直方图描述了数据中某个范围内数据出现的频度。这么说有些抽象,我们通过一个代码示例来描述就好理解了:

# hist.py
import matplotlib.pyplot as plt
import numpy as np
data = [np.random.randint(0, n, n) for n in [3000, 4000, 5000]]
labels = ['3K', '4K', '5K']
bins = [0, 100, 500, 1000, 2000, 3000, 4000, 5000]
plt.hist(data, bins=bins, label=labels)
plt.legend()
plt.show()

上面这段代码中,[np.random.randint(0, n, n) for n in [3000, 4000, 5000]]生成了包含了三个数组的数组,这其中:

第一个数组包含了3000个随机数,这些随机数的范围是 [0, 3000) 第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000) 第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000)

bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。所以最终结果一共会显示7个数据点。同样的,我们指定了标签和图例。

这段代码的输出如下图所示:

Python 绘图库 Matplotlib 入门教程

在这幅图中,我们看到,三组数据在3000以下都有数据,并且频度是差不多的。但蓝色条只有3000以下的数据,橙色条只有4000以下的数据。这与我们的随机数组数据刚好吻合。

hist函数的详细说明参见这里:matplotlib.pyplot.hist

结束语

通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

需要说明的是,由于是入门教程,因此本文中我们只给出了这些函数和图形最基本的使用方法。但实际上,它们的功能远不止这么简单。因此本文中我们贴出了这些函数的API地址以便读者进一步的研究。

Python 相关文章推荐
详解python中asyncio模块
Mar 03 Python
python读取TXT每行,并存到LIST中的方法
Oct 26 Python
详解python selenium 爬取网易云音乐歌单名
Mar 28 Python
Django在pycharm下修改默认启动端口的方法
Jul 26 Python
Django 请求Request的具体使用方法
Nov 11 Python
python实现批量处理将图片粘贴到另一张图片上并保存
Dec 12 Python
Python运行DLL文件的方法
Jan 17 Python
python+selenium 脚本实现每天自动登记的思路详解
Mar 11 Python
python数据处理——对pandas进行数据变频或插值实例
Apr 22 Python
Kears 使用:通过回调函数保存最佳准确率下的模型操作
Jun 17 Python
pycharm Tab键设置成4个空格的操作
Feb 26 Python
python scrapy简单模拟登录的代码分析
Jul 21 Python
python 列表删除所有指定元素的方法
Apr 19 #Python
Python 机器学习库 NumPy入门教程
Apr 19 #Python
python 显示数组全部元素的方法
Apr 19 #Python
PyQt5每天必学之进度条效果
Apr 19 #Python
python中实现将多个print输出合成一个数组
Apr 19 #Python
Python 数据处理库 pandas 入门教程基本操作
Apr 19 #Python
PyQt5实现下载进度条效果
Apr 19 #Python
You might like
Linux下ZendOptimizer的安装与配置方法
2007/04/12 PHP
php 数组的创建、调用和更新实现代码
2009/03/09 PHP
解析php中heredoc的使用方法
2013/06/17 PHP
PHP判断字符串长度的两种方法很实用
2015/09/22 PHP
PHP递归实现层级树状展开
2016/04/01 PHP
PHP Callable强制指定回调类型的方法
2016/08/30 PHP
Mac系统下搭建Nginx+php-fpm实例讲解
2020/12/15 PHP
javascript form 验证函数 弹出对话框形式
2009/06/23 Javascript
js判断ie版本号的简单实现代码
2014/03/05 Javascript
JavaScript避免内存泄露及内存管理技巧
2014/09/05 Javascript
avascript中的自执行匿名函数应用示例
2014/09/15 Javascript
JavaScript实现列出数组中最长的连续数
2014/12/29 Javascript
简述AngularJS相关的一些编程思想
2015/06/23 Javascript
完美解决手机浏览器顶部下拉出现网页源或刷新的问题
2017/11/30 Javascript
Python中列表和元组的使用方法和区别详解
2020/12/30 Python
使用Python生成XML的方法实例
2017/03/21 Python
python 美化输出信息的实例
2018/10/15 Python
程序员写Python时的5个坏习惯,你有几条?
2018/11/26 Python
django foreignkey外键使用的例子 相当于left join
2019/08/06 Python
给大家整理了19个pythonic的编程习惯(小结)
2019/09/25 Python
PyCharm更改字体和界面样式的方法步骤
2019/09/27 Python
Pytorch之finetune使用详解
2020/01/18 Python
Anaconda3+tensorflow2.0.0+PyCharm安装与环境搭建(图文)
2020/02/18 Python
Django中ORM找出内容不为空的数据实例
2020/05/20 Python
pandas按照列的值排序(某一列或者多列)
2020/12/13 Python
SmartBuyGlasses丹麦:网上购买名牌太阳镜、眼镜和隐形眼镜
2016/10/01 全球购物
四方通行旅游网:台湾订房、出国旅游
2017/09/20 全球购物
e路東瀛(JAPANiCAN)香港:日本旅游、日本酒店和温泉旅馆预订
2018/11/21 全球购物
童装店创业计划书
2014/01/09 职场文书
写给女朋友的检讨书
2014/01/28 职场文书
住房租房协议书
2014/08/20 职场文书
开展警示教育活动总结
2015/05/09 职场文书
2015年国庆节寄语
2015/08/17 职场文书
创业计划书之酒厂
2019/10/14 职场文书
Python实现天气查询软件
2021/06/07 Python
十大最强水系宝可梦,最美宝可梦排第三,榜首大家最熟悉
2022/03/18 日漫