用Python实现KNN分类算法


Posted in Python onDecember 22, 2017

本文实例为大家分享了Python KNN分类算法的具体代码,供大家参考,具体内容如下

KNN分类算法应该算得上是机器学习中最简单的分类算法了,所谓KNN即为K-NearestNeighbor(K个最邻近样本节点)。在进行分类之前KNN分类器会读取较多数量带有分类标签的样本数据作为分类的参照数据,当它对类别未知的样本进行分类时,会计算当前样本与所有参照样本的差异大小;该差异大小是通过数据点在样本特征的多维度空间中的距离来进行衡量的,也就是说,如果两个样本点在在其特征数据多维度空间中的距离越近,则这两个样本点之间的差异就越小,这两个样本点属于同一类别的可能性就越大。KNN分类算法利用这一基本的认知,通过计算待预测样本点与参照样本空间中所有的样本的距离,并找到K个距离该样本点最近的参照样本点,统计出这最邻近的K个样本点中占比数量最多的类别,并将该类别作为预测结果。

用Python实现KNN分类算法

KNN的模型十分简单,没有涉及到模型的训练,每一次预测都需要计算该点与所有已知点的距离,因此随着参照样本集的数量增加,KNN分类器的计算开销也会呈比例增加,并且KNN并不适合数量很少的样本集。并且KNN提出之后,后续很多人提出了很多改进的算法,分别从提高算法速率和提高算法准确率两个方向,但是都是基于“距离越近,相似的可能性越大”的原则。这里利用Python实现了KNN最原始版本的算法,数据集使用的是机器学习课程中使用得非常多的莺尾花数据集,同时我在原数据集的基础上向数据集中添加了少量的噪声数据,测试KNN算法的鲁棒性。

数据集用得是莺尾花数据集,下载地址。

用Python实现KNN分类算法

数据集包含90个数据(训练集),分为2类,每类45个数据,每个数据4个属性 

Sepal.Length(花萼长度),单位是cm;
Sepal.Width(花萼宽度),单位是cm;
Petal.Length(花瓣长度),单位是cm;
Petal.Width(花瓣宽度),单位是cm;

分类种类: Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾)
之前主打C++,近来才学的Python,今天想拿实现KNN来练练手,下面上代码:

#coding=utf-8
import math
#定义鸢尾花的数据类
class Iris:
 data=[]
 label=[]
 pass
#定义一个读取莺尾花数据集的函数
def load_dataset(filename="Iris_train.txt"):
 f=open(filename)
 line=f.readline().strip()
 propty=line.split(',')#属性名
 dataset=[]#保存每一个样本的数据信息
 label=[]#保存样本的标签
 while line:
 line=f.readline().strip()
 if(not line):
 break
 temp=line.split(',')
 content=[]
 for i in temp[0:-1]:
 content.append(float(i))
 dataset.append(content)
 label.append(temp[-1])
 total=Iris()
 total.data=dataset
 total.label=label
 return total#返回数据集
 
#定义一个Knn分类器类
class KnnClassifier:
 def __init__(self,k,type="Euler"):#初始化的时候定义正整数K和距离计算方式
 self.k=k
 self.type=type
 self.dataloaded=False
 def load_traindata(self,traindata):#加载数据集
 self.data=traindata.data
 self.label=traindata.label
 self.label_set=set(traindata.label)
 self.dataloaded=True#是否加载数据集的标记
 
 def Euler_dist(self,x,y):# 欧拉距离计算方法,x、y都是向量
 sum=0
 for i,j in zip(x,y):
 sum+=math.sqrt((i-j)**2)
 return sum
 def Manhattan_dist(self,x,y):#曼哈顿距离计算方法,x、y都是向量
 sum=0
 for i,j in zip(x,y):
 sum+=abs(i-j)
 return sum
 def predict(self,temp):#预测函数,读入一个预测样本的数据,temp是一个向量
 if(not self.dataloaded):#判断是否有训练数据
 print "No train_data load in"
 return
 distance_and_label=[]
 if(self.type=="Euler"):#判断距离计算方式,欧拉距离或者曼哈顿距离
 for i,j in zip(self.data,self.label):
 dist=self.Euler_dist(temp,i)
 distance_and_label.append([dist,j])
 else:
 if(self.type=="Manhattan"):
 for i,j in zip(self.data,self.label):
 dist=self.Manhattan_dist(temp,i)
 distance_and_label.append([dist,j])
 else:
 print "type choice error"
 #获取K个最邻近的样本的距离和类别标签
 neighborhood=sorted(distance_and_label,cmp=lambda x,y : cmp(x[0],y[0]))[0:self.k]
 neighborhood_class=[]
 for i in neighborhood:
 neighborhood_class.append(i[1])
 class_set=set(neighborhood_class)
 neighborhood_class_count=[]
 print "In k nearest neighborhoods:"
 #统计该K个最邻近点中各个类别的个数
 for i in class_set:
 a=neighborhood_class.count(i)
 neighborhood_class_count.append([i,a])
 print "class: ",i," count: ",a
 result=sorted(neighborhood_class_count,cmp=lambda x,y : cmp(x[1],y[1]))[-1][0]
 print "result: ",result
 return result#返回预测的类别
 
if __name__ == '__main__':
 traindata=load_dataset()#training data
 testdata=load_dataset("Iris_test.txt")#testing data
 #新建一个Knn分类器的K为20,默认为欧拉距离计算方式
 kc=KnnClassifier(20)
 kc.load_traindata(traindata)
 predict_result=[]
 #预测测试集testdata中所有待预测样本的结果
 for i,j in zip(testdata.data,testdata.label):
 predict_result.append([i,kc.predict(i),j])
 correct_count=0
 #将预测结果和正确结果进行比对,计算该次预测的准确率
 for i in predict_result:
 if(i[1]==i[2]):
 correct_count+=1
 ratio=float(correct_count)/len(predict_result)
 print "correct predicting ratio",ratio

测试集中11个待测样本点的分类结果:

In k nearest neighborhoods:
class: Iris-setosa count: 20
result: Iris-setosa
In k nearest neighborhoods:
class: Iris-setosa count: 20
result: Iris-setosa
In k nearest neighborhoods:
class: Iris-setosa count: 20
result: Iris-setosa
In k nearest neighborhoods:
class: Iris-setosa count: 20
result: Iris-setosa
In k nearest neighborhoods:
class: Iris-setosa count: 20
result: Iris-setosa
In k nearest neighborhoods:
class: Iris-versicolor count: 20
result: Iris-versicolor
In k nearest neighborhoods:
class: Iris-versicolor count: 20
result: Iris-versicolor
In k nearest neighborhoods:
class: Iris-versicolor count: 20
result: Iris-versicolor
In k nearest neighborhoods:
class: Iris-versicolor count: 20
result: Iris-versicolor
In k nearest neighborhoods:
class: Iris-versicolor count: 20
result: Iris-versicolor
In k nearest neighborhoods:
class: Iris-setosa count: 18
class: Iris-versicolor count: 2
result: Iris-setosa
correct predicting ratio 0.909090909091

KNN中对距离的计算有很多种方法,不同的方法适用于不同的数据集,该代码中只实现了欧拉距离和曼哈顿距离两种计算方式;测试集中的数据是从原数据集中抽离出来的,数据量不是很大,结果并不能很好地体现KNN的性能,所以程序运行结果仅供参考。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python httplib模块使用实例
Apr 11 Python
Python常用小技巧总结
Jun 01 Python
Python读取word文本操作详解
Jan 22 Python
python使用jieba实现中文分词去停用词方法示例
Mar 11 Python
解决python flask中config配置管理的问题
Jul 26 Python
python 实现矩阵填充0的例子
Nov 29 Python
Python3.7在anaconda里面使用IDLE编译器的步骤详解
Apr 29 Python
Python尾递归优化实现代码及原理详解
Oct 09 Python
python操作toml文件的示例代码
Nov 27 Python
Python如何实现感知器的逻辑电路
Dec 25 Python
快速一键生成Python爬虫请求头
Mar 04 Python
超详细Python解释器新手安装教程
May 10 Python
Python数据拟合与广义线性回归算法学习
Dec 22 #Python
python 动态加载的实现方法
Dec 22 #Python
Python决策树分类算法学习
Dec 22 #Python
Python之Scrapy爬虫框架安装及简单使用详解
Dec 22 #Python
Python2.7下安装Scrapy框架步骤教程
Dec 22 #Python
Python机器学习之决策树算法
Dec 22 #Python
python+selenium实现登录账户后自动点击的示例
Dec 22 #Python
You might like
PHP 编程请选择正确的文本编辑软件
2006/12/21 PHP
php实现图片按比例截取的方法
2017/02/06 PHP
PHP实现超简单的SSL加密解密、验证及签名的方法示例
2017/08/28 PHP
gearman中任务的优先级和返回状态实例分析
2020/02/27 PHP
Extjs在exlipse中设置自动提示的方法
2010/04/07 Javascript
javascript倒计时功能实现代码
2012/06/07 Javascript
自定义的一个简单时尚js下拉选择框
2013/11/20 Javascript
检查输入的是否是数字使用keyCode配合onkeypress事件
2014/01/23 Javascript
javascript使用正则控制input输入框允许输入的值方法大全
2014/06/19 Javascript
javascript中几个容易混淆的概念总结
2015/04/14 Javascript
JS实现两表格里数据来回转移的方法
2015/05/28 Javascript
javascript省市级联功能实现方法实例详解
2015/10/20 Javascript
基于jQuery实现网页打印功能
2015/12/01 Javascript
项目实践一图片上传之form表单还是base64前端图片压缩(前端图片压缩)
2016/07/28 Javascript
JavaScript 链式结构序列化详解
2016/09/30 Javascript
jQuery中ztree 点击文本框弹出下拉框的实例代码
2017/02/05 Javascript
详解nodeJS之路径PATH模块
2017/05/31 NodeJs
React如何利用相对于根目录进行引用组件详解
2017/10/09 Javascript
浅谈Vue页面级缓存解决方案feb-alive(上)
2019/04/14 Javascript
JS pushlet XMLAdapter适配器用法案例解析
2020/10/16 Javascript
[02:00]最后,我终于出了辉耀
2018/03/27 DOTA
用python登录Dr.com思路以及代码分享
2014/06/25 Python
python实现简单的socket server实例
2015/04/29 Python
python 日期操作类代码
2018/05/05 Python
python实现beta分布概率密度函数的方法
2019/07/08 Python
Python使用贪婪算法解决问题
2019/10/22 Python
tensorflow对图像进行拼接的例子
2020/02/05 Python
Anaconda3中的Jupyter notebook添加目录插件的实现
2020/05/18 Python
美国最大的珠宝首饰网上商城:Jewelry.com
2016/07/22 全球购物
eBay意大利购物网站:eBay.it
2019/09/04 全球购物
澳大利亚美容产品及化妆品在线:Activeskin
2020/06/03 全球购物
销售文员岗位职责
2013/11/29 职场文书
建筑安全生产目标责任书
2014/07/23 职场文书
危货运输企业安全生产责任书
2014/07/28 职场文书
2014年扫黄打非工作总结
2014/12/03 职场文书
mysql 索引的数据结构为什么要采用B+树
2022/04/26 MySQL