Python中的数据对象持久化存储模块pickle的使用示例


Posted in Python onMarch 03, 2016

Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原。具体用法如下:
pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档。后续可以从字符或文档中还原为内存对象。新版本的Python中用c重新实现了一遍,叫cPickle,性能更高。 下面的代码演示了pickle库的常用接口用法,非常简单:

import cPickle as pickle

# dumps and loads
# 将内存对象dump为字符串,或者将字符串load为内存对象
def test_dumps_and_loads():
  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t)
  print o
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p

 

# 关于HIGHEST_PROTOCOL参数,pickle 支持3种protocol,0、1、2:
# http://stackoverflow.com/questions/23582489/python-pickle-protocol-choice
# 0:ASCII protocol,兼容旧版本的Python
# 1:binary format,兼容旧版本的Python
# 2:binary format,Python2.3 之后才有,更好的支持new-sytle class
def test_dumps_and_loads_HIGHEST_PROTOCOL():
  print 'HIGHEST_PROTOCOL: ', pickle.HIGHEST_PROTOCOL

  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p


# new-style class
def test_new_sytle_class():
  class TT(object):
    def __init__(self, arg, **kwargs):
      super(TT, self).__init__()
      self.arg = arg
      self.kwargs = kwargs

    def test(self):
      print self.arg
      print self.kwargs

  # ASCII protocol
  t = TT('test', a=1, b=2)
  o1 = pickle.dumps(t)
  print o1
  print 'o1 len: ', len(o1)
  p = pickle.loads(o1)
  p.test()

  # HIGHEST_PROTOCOL对new-style class支持更好,性能更高
  o2 = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'o2 len: ', len(o2)
  p = pickle.loads(o2)
  p.test()


# dump and load
# 将内存对象序列化后直接dump到文件或支持文件接口的对象中
# 对于dump,需要支持write接口,接受一个字符串作为输入参数,比如:StringIO
# 对于load,需要支持read接口,接受int输入参数,同时支持readline接口,无输入参数,比如StringIO

# 使用文件,ASCII编码
def test_dump_and_load_with_file():
  t = {'name': ['v1', 'v2']}

  # ASCII format
  with open('test.txt', 'w') as fp:
    pickle.dump(t, fp)

  with open('test.txt', 'r') as fp:
    p = pickle.load(fp)
    print p


# 使用文件,二进制编码
def test_dump_and_load_with_file_HIGHEST_PROTOCOL():
  t = {'name': ['v1', 'v2']}
  with open('test.bin', 'wb') as fp:
    pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  with open('test.bin', 'rb') as fp:
    p = pickle.load(fp)
    print p


# 使用StringIO,二进制编码
def test_dump_and_load_with_StringIO():
  import StringIO

  t = {'name': ['v1', 'v2']}

  fp = StringIO.StringIO()
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# 使用自定义类
# 这里演示用户自定义类,只要实现了write、read、readline接口,
# 就可以用作dump、load的file参数
def test_dump_and_load_with_user_def_class():
  import StringIO

  class FF(object):
    def __init__(self):
      self.buf = StringIO.StringIO()

    def write(self, s):
      self.buf.write(s)
      print 'len: ', len(s)

    def read(self, n):
      return self.buf.read(n)

    def readline(self):
      return self.buf.readline()

    def seek(self, pos, mod=0):
      return self.buf.seek(pos, mod)

    def close(self):
      self.buf.close()

  fp = FF()
  t = {'name': ['v1', 'v2']}
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# Pickler/Unpickler
# Pickler(file, protocol).dump(obj) 等价于 pickle.dump(obj, file[, protocol])
# Unpickler(file).load() 等价于 pickle.load(file)
# Pickler/Unpickler 封装性更好,可以很方便的替换file
def test_pickler_unpickler():
  t = {'name': ['v1', 'v2']}

  f = file('test.bin', 'wb')
  pick = pickle.Pickler(f, pickle.HIGHEST_PROTOCOL)
  pick.dump(t)
  f.close()

  f = file('test.bin', 'rb')
  unpick = pickle.Unpickler(f)
  p = unpick.load()
  print p
  f.close()

pickle.dump(obj, file[, protocol])
这是将对象持久化的方法,参数的含义分别为:

  • obj: 要持久化保存的对象;
  • file: 一个拥有 write() 方法的对象,并且这个 write() 方法能接收一个字符串作为参数。这个对象可以是一个以写模式打开的文件对象或者一个 StringIO 对象,或者其他自定义的满足条件的对象。
  • protocol: 这是一个可选的参数,默认为 0 ,如果设置为 1 或 True,则以高压缩的二进制格式保存持久化后的对象,否则以ASCII格式保存。

对象被持久化后怎么还原呢?pickle 模块也提供了相应的方法,如下:

pickle.load(file)
只有一个参数 file ,对应于上面 dump 方法中的 file 参数。这个 file 必须是一个拥有一个能接收一个整数为参数的 read() 方法以及一个不接收任何参数的 readline() 方法,并且这两个方法的返回值都应该是字符串。这可以是一个打开为读的文件对象、StringIO 对象或其他任何满足条件的对象。

下面是一个基本的用例:

# -*- coding: utf-8 -*-

import pickle
# 也可以这样:
# import cPickle as pickle

obj = {"a": 1, "b": 2, "c": 3}

# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))

# do something else ...

# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))

print obj2

# -*- coding: utf-8 -*-
 
import pickle
# 也可以这样:
# import cPickle as pickle
 
obj = {"a": 1, "b": 2, "c": 3}
 
# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))
 
# do something else ...
 
# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))
 
print obj2

不过实际应用中,我们可能还会有一些改进,比如用 cPickle 来代替 pickle ,前者是后者的一个 C 语言实现版本,拥有更快的速度,另外,有时在 dump 时也会将第三个参数设为 True 以提高压缩比。再来看下面的例子:

# -*- coding: utf-8 -*-

import cPickle as pickle
import random
import os

import time

LENGTH = 1024 * 10240

def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))

 d["a"] = a

 print "dumping..."

 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)

 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size

 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)

 print "loading..."

 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)


if __name__ == "__main__":
 main()

# -*- coding: utf-8 -*-
 
import cPickle as pickle
import random
import os
 
import time
 
LENGTH = 1024 * 10240
 
def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))
 
 d["a"] = a
 
 print "dumping..."
 
 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)
 
 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size
 
 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
 
 print "loading..."
 
 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)
 
 
if __name__ == "__main__":
 main()

在我的电脑上执行结果为:

dumping…
dump1: 1.297s
dump2: 4.750s
20992503, 68894198, 30.47%
loading…
load1: 2.797s
load2: 10.125s

可以看到,dump 时如果指定了 protocol 为 True,压缩过后的文件的大小只有原来的文件的 30% ,同时无论在 dump 时还是 load 时所耗费的时间都比原来少。因此,一般来说,可以建议把这个值设为 True 。

另外,pickle 模块还提供 dumps 和 loads 两个方法,用法与上面的 dump 和 load 方法类似,只是不需要输入 file 参数,输入及输出都是字符串对象,有些场景中使用这两个方法可能更为方便。

Python 相关文章推荐
Python中的jquery PyQuery库使用小结
May 13 Python
Python多线程编程(八):使用Event实现线程间通信
Apr 05 Python
PyQt实现界面翻转切换效果
Apr 20 Python
Python中请不要再用re.compile了
Jun 30 Python
python对csv文件追加写入列的方法
Aug 01 Python
django项目中使用手机号登录的实例代码
Aug 15 Python
在django模板中实现超链接配置
Aug 21 Python
Python 实现Serial 与STM32J进行串口通讯
Dec 18 Python
Python2 与Python3的版本区别实例分析
Mar 30 Python
python 使用while循环输出*组成的菱形实例
Apr 12 Python
如何通过Python3和ssl实现加密通信功能
May 09 Python
Python使用urlretrieve实现直接远程下载图片的示例代码
Aug 17 Python
Python和Perl绘制中国北京跑步地图的方法
Mar 03 #Python
python套接字流重定向实例汇总
Mar 03 #Python
Python设计模式中单例模式的实现及在Tornado中的应用
Mar 02 #Python
Python使用设计模式中的责任链模式与迭代器模式的示例
Mar 02 #Python
详解Python设计模式编程中观察者模式与策略模式的运用
Mar 02 #Python
Python设计模式编程中解释器模式的简单程序示例分享
Mar 02 #Python
分析Python中设计模式之Decorator装饰器模式的要点
Mar 02 #Python
You might like
为什么那些咖啡爱好者大多看不上连锁咖啡店?
2021/03/06 咖啡文化
php设计模式 Factory(工厂模式)
2011/06/26 PHP
php防止网站被刷新的方法汇总
2014/12/01 PHP
PHP实现微信发红包程序
2015/08/24 PHP
php提供实现反射的方法和实例代码
2019/09/17 PHP
laravel利用中间件防止未登录用户直接访问后台的方法
2019/09/30 PHP
javascript中的对象和数组的应用技巧
2007/01/07 Javascript
IE本地存储userdata的一个bug说明
2010/07/01 Javascript
JQuery实现倒计时按钮的实现代码
2012/03/23 Javascript
js中单引号与双引号冲突问题解决方法
2013/10/04 Javascript
JavaScript对内存分配及管理机制详细解析
2013/11/11 Javascript
js鼠标及对象坐标控制属性详细解析
2013/12/14 Javascript
javascript页面上使用动态时间具体实现
2014/03/18 Javascript
PHP中CURL的几个经典应用实例
2015/01/23 Javascript
详解JavaScript的AngularJS框架中的表达式与指令
2016/03/05 Javascript
jQuery实现checkbox列表的全选、反选功能
2016/11/24 Javascript
原生Aajax 和jQuery Ajax 写法个人总结
2017/03/24 jQuery
vue学习笔记之vue1.0和vue2.0的区别介绍
2017/05/17 Javascript
JS抛物线动画实例制作
2018/02/24 Javascript
JavaScript获取移动设备型号的实现代码(JS获取手机型号和系统)
2018/03/10 Javascript
Vue页面跳转动画效果的实现方法
2018/09/23 Javascript
详解elementui之el-image-viewer(图片查看器)
2019/08/30 Javascript
使用JS实现动态时钟
2020/03/12 Javascript
JS+canvas五子棋人机对战实现步骤详解
2020/06/04 Javascript
[01:51]2014DOTA2西雅图邀请赛 MVP 外卡赛black场间采访
2014/07/09 DOTA
详解Python装饰器由浅入深
2016/12/09 Python
python登录并爬取淘宝信息代码示例
2017/12/09 Python
python直接获取API传递回来的参数方法
2018/12/17 Python
Python生成器常见问题及解决方案
2020/03/21 Python
Django中ORM找出内容不为空的数据实例
2020/05/20 Python
Python实现曲线拟合的最小二乘法
2021/02/19 Python
一款基于css3麻将筛子3D翻转特效的实例教程
2014/12/31 HTML / CSS
世界上最好的威士忌和烈性酒购买网站:The Whisky Exchange
2016/11/20 全球购物
英国最大的在线运动补充剂商店:Discount Supplements
2017/06/03 全球购物
老生常谈 使用 CSS 实现三角形的技巧(多种方法)
2021/04/13 HTML / CSS
CPU不支持Windows11系统怎么办
2021/11/21 数码科技