Python中的数据对象持久化存储模块pickle的使用示例


Posted in Python onMarch 03, 2016

Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原。具体用法如下:
pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档。后续可以从字符或文档中还原为内存对象。新版本的Python中用c重新实现了一遍,叫cPickle,性能更高。 下面的代码演示了pickle库的常用接口用法,非常简单:

import cPickle as pickle

# dumps and loads
# 将内存对象dump为字符串,或者将字符串load为内存对象
def test_dumps_and_loads():
  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t)
  print o
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p

 

# 关于HIGHEST_PROTOCOL参数,pickle 支持3种protocol,0、1、2:
# http://stackoverflow.com/questions/23582489/python-pickle-protocol-choice
# 0:ASCII protocol,兼容旧版本的Python
# 1:binary format,兼容旧版本的Python
# 2:binary format,Python2.3 之后才有,更好的支持new-sytle class
def test_dumps_and_loads_HIGHEST_PROTOCOL():
  print 'HIGHEST_PROTOCOL: ', pickle.HIGHEST_PROTOCOL

  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p


# new-style class
def test_new_sytle_class():
  class TT(object):
    def __init__(self, arg, **kwargs):
      super(TT, self).__init__()
      self.arg = arg
      self.kwargs = kwargs

    def test(self):
      print self.arg
      print self.kwargs

  # ASCII protocol
  t = TT('test', a=1, b=2)
  o1 = pickle.dumps(t)
  print o1
  print 'o1 len: ', len(o1)
  p = pickle.loads(o1)
  p.test()

  # HIGHEST_PROTOCOL对new-style class支持更好,性能更高
  o2 = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'o2 len: ', len(o2)
  p = pickle.loads(o2)
  p.test()


# dump and load
# 将内存对象序列化后直接dump到文件或支持文件接口的对象中
# 对于dump,需要支持write接口,接受一个字符串作为输入参数,比如:StringIO
# 对于load,需要支持read接口,接受int输入参数,同时支持readline接口,无输入参数,比如StringIO

# 使用文件,ASCII编码
def test_dump_and_load_with_file():
  t = {'name': ['v1', 'v2']}

  # ASCII format
  with open('test.txt', 'w') as fp:
    pickle.dump(t, fp)

  with open('test.txt', 'r') as fp:
    p = pickle.load(fp)
    print p


# 使用文件,二进制编码
def test_dump_and_load_with_file_HIGHEST_PROTOCOL():
  t = {'name': ['v1', 'v2']}
  with open('test.bin', 'wb') as fp:
    pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  with open('test.bin', 'rb') as fp:
    p = pickle.load(fp)
    print p


# 使用StringIO,二进制编码
def test_dump_and_load_with_StringIO():
  import StringIO

  t = {'name': ['v1', 'v2']}

  fp = StringIO.StringIO()
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# 使用自定义类
# 这里演示用户自定义类,只要实现了write、read、readline接口,
# 就可以用作dump、load的file参数
def test_dump_and_load_with_user_def_class():
  import StringIO

  class FF(object):
    def __init__(self):
      self.buf = StringIO.StringIO()

    def write(self, s):
      self.buf.write(s)
      print 'len: ', len(s)

    def read(self, n):
      return self.buf.read(n)

    def readline(self):
      return self.buf.readline()

    def seek(self, pos, mod=0):
      return self.buf.seek(pos, mod)

    def close(self):
      self.buf.close()

  fp = FF()
  t = {'name': ['v1', 'v2']}
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# Pickler/Unpickler
# Pickler(file, protocol).dump(obj) 等价于 pickle.dump(obj, file[, protocol])
# Unpickler(file).load() 等价于 pickle.load(file)
# Pickler/Unpickler 封装性更好,可以很方便的替换file
def test_pickler_unpickler():
  t = {'name': ['v1', 'v2']}

  f = file('test.bin', 'wb')
  pick = pickle.Pickler(f, pickle.HIGHEST_PROTOCOL)
  pick.dump(t)
  f.close()

  f = file('test.bin', 'rb')
  unpick = pickle.Unpickler(f)
  p = unpick.load()
  print p
  f.close()

pickle.dump(obj, file[, protocol])
这是将对象持久化的方法,参数的含义分别为:

  • obj: 要持久化保存的对象;
  • file: 一个拥有 write() 方法的对象,并且这个 write() 方法能接收一个字符串作为参数。这个对象可以是一个以写模式打开的文件对象或者一个 StringIO 对象,或者其他自定义的满足条件的对象。
  • protocol: 这是一个可选的参数,默认为 0 ,如果设置为 1 或 True,则以高压缩的二进制格式保存持久化后的对象,否则以ASCII格式保存。

对象被持久化后怎么还原呢?pickle 模块也提供了相应的方法,如下:

pickle.load(file)
只有一个参数 file ,对应于上面 dump 方法中的 file 参数。这个 file 必须是一个拥有一个能接收一个整数为参数的 read() 方法以及一个不接收任何参数的 readline() 方法,并且这两个方法的返回值都应该是字符串。这可以是一个打开为读的文件对象、StringIO 对象或其他任何满足条件的对象。

下面是一个基本的用例:

# -*- coding: utf-8 -*-

import pickle
# 也可以这样:
# import cPickle as pickle

obj = {"a": 1, "b": 2, "c": 3}

# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))

# do something else ...

# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))

print obj2

# -*- coding: utf-8 -*-
 
import pickle
# 也可以这样:
# import cPickle as pickle
 
obj = {"a": 1, "b": 2, "c": 3}
 
# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))
 
# do something else ...
 
# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))
 
print obj2

不过实际应用中,我们可能还会有一些改进,比如用 cPickle 来代替 pickle ,前者是后者的一个 C 语言实现版本,拥有更快的速度,另外,有时在 dump 时也会将第三个参数设为 True 以提高压缩比。再来看下面的例子:

# -*- coding: utf-8 -*-

import cPickle as pickle
import random
import os

import time

LENGTH = 1024 * 10240

def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))

 d["a"] = a

 print "dumping..."

 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)

 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size

 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)

 print "loading..."

 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)


if __name__ == "__main__":
 main()

# -*- coding: utf-8 -*-
 
import cPickle as pickle
import random
import os
 
import time
 
LENGTH = 1024 * 10240
 
def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))
 
 d["a"] = a
 
 print "dumping..."
 
 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)
 
 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size
 
 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
 
 print "loading..."
 
 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)
 
 
if __name__ == "__main__":
 main()

在我的电脑上执行结果为:

dumping…
dump1: 1.297s
dump2: 4.750s
20992503, 68894198, 30.47%
loading…
load1: 2.797s
load2: 10.125s

可以看到,dump 时如果指定了 protocol 为 True,压缩过后的文件的大小只有原来的文件的 30% ,同时无论在 dump 时还是 load 时所耗费的时间都比原来少。因此,一般来说,可以建议把这个值设为 True 。

另外,pickle 模块还提供 dumps 和 loads 两个方法,用法与上面的 dump 和 load 方法类似,只是不需要输入 file 参数,输入及输出都是字符串对象,有些场景中使用这两个方法可能更为方便。

Python 相关文章推荐
python实现xlsx文件分析详解
Jan 02 Python
Tensorflow 训练自己的数据集将数据直接导入到内存
Jun 19 Python
python合并已经存在的sheet数据到新sheet的方法
Dec 11 Python
python matplotlib 画dataframe的时间序列图实例
Nov 20 Python
python 二维矩阵转三维矩阵示例
Nov 30 Python
python重要函数eval多种用法解析
Jan 14 Python
完美解决pycharm导入自己写的py文件爆红问题
Feb 12 Python
python中sklearn的pipeline模块实例详解
May 21 Python
python利用递归方法实现求集合的幂集
Sep 07 Python
python字典通过值反查键的实现(简洁写法)
Sep 30 Python
Python实现王者荣耀自动刷金币的完整步骤
Jan 22 Python
python单向链表实例详解
May 25 Python
Python和Perl绘制中国北京跑步地图的方法
Mar 03 #Python
python套接字流重定向实例汇总
Mar 03 #Python
Python设计模式中单例模式的实现及在Tornado中的应用
Mar 02 #Python
Python使用设计模式中的责任链模式与迭代器模式的示例
Mar 02 #Python
详解Python设计模式编程中观察者模式与策略模式的运用
Mar 02 #Python
Python设计模式编程中解释器模式的简单程序示例分享
Mar 02 #Python
分析Python中设计模式之Decorator装饰器模式的要点
Mar 02 #Python
You might like
PHP SQLite类
2009/05/07 PHP
php学习之 数组声明
2011/06/09 PHP
Thinkphp中Create方法深入探究
2014/06/16 PHP
PHP中使用虚代理实现延迟加载技术
2014/11/05 PHP
php文件上传类完整实例
2016/05/14 PHP
PHP学习记录之数组函数
2018/06/01 PHP
JavaScript中通过闭包解决只能取得包含函数中任何变量最后一个值的问题
2010/08/12 Javascript
弹出窗口并且此窗口带有半透明的遮罩层效果
2014/03/13 Javascript
js 调用百度地图api并在地图上进行打点添加标注
2014/05/13 Javascript
jq实现左侧显示图片右侧文字滑动切换效果
2015/08/04 Javascript
纯js代码实现未知宽高的元素在指定元素中垂直水平居中显示
2015/09/12 Javascript
JS实现消息来时让网页标题闪动效果的方法
2016/04/20 Javascript
JavaScript数组_动力节点Java学院整理
2017/06/26 Javascript
简单的vuex 的使用案例笔记
2018/04/13 Javascript
对angular2中的ngfor和ngif指令嵌套实例讲解
2018/09/12 Javascript
使用 js 简单的实现 bind、call 、aplly代码实例
2019/09/07 Javascript
[50:20]DOTA2上海特级锦标赛主赛事日 - 5 总决赛Liquid VS Secret第四局
2016/03/06 DOTA
Python实现的几个常用排序算法实例
2014/06/16 Python
判断python字典中key是否存在的两种方法
2018/08/10 Python
Windows下Anaconda2安装NLTK教程
2018/09/19 Python
pycharm运行出现ImportError:No module named的解决方法
2018/10/13 Python
python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)
2020/04/07 Python
python创建文本文件的简单方法
2020/08/30 Python
Elasticsearch py客户端库安装及使用方法解析
2020/09/14 Python
python搜索算法原理及实例讲解
2020/11/18 Python
迪卡侬印度官网:购买所有体育用品
2017/06/24 全球购物
Kangol帽子官网:坎戈尔袋鼠
2018/09/26 全球购物
澳大利亚便宜隐形眼镜购买网站:QUICKLENS Australia
2018/10/06 全球购物
Farah官方网站:男士服装及配件
2019/11/01 全球购物
德国W家官网,可直邮中国的母婴商城:Windeln.de
2021/03/03 全球购物
会计专业毕业生求职信分享
2014/01/03 职场文书
奶茶店创业计划书
2014/08/14 职场文书
夏季药店促销方案
2014/08/22 职场文书
2014第二批党员干部对照“四风”找差距检查材料思想汇报
2014/09/18 职场文书
六查六看心得体会
2014/10/14 职场文书
2015年度个人教学工作总结
2015/05/20 职场文书