简单介绍Python中的try和finally和with方法


Posted in Python onMay 05, 2015

用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
 

def read_file(): 
  try: 
    f = open('yui', 'r') 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

    不过这显然无法运作, 因为  f  是在  try  块中定义的, 而在  finally  中无法引用.

    如果将  f  提取到  try  块外部, 如
 

def read_file(): 
   f = open('azusa', 'r') 
  try: 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.

    挫一点的方法自然是, 再套一层  try  吧
 

def read_file(): 
   try: 
    f = open('sawako', 'r') 
    try: 
      print ''.join(f.readlines()) 
    except: 
      print 'error occurs while reading file'
    finally: 
      f.close() 
   except: 
     print 'error occurs while reading file'

    当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.

    正规一点的方式是, 使用 Python 引入的  with  结构来解决, 如
 

def readFile(): 
  try: 
     with open('mio', 'r') as f: 
      print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'

    当文件打开失败时, 异常自然会被  except  到; 否则, 在  with  块结束之后, 打开的文件将自动关闭.

    除了打开文件, 还有其它这样可以用于  with  的东西么? 或者说, 怎么自定义一个什么东西, 让它能用于  with 呢?
    直接回答后一个问题吧, 秘密在于 Python 虚拟机在  with  块退出时会去寻找对象的  __exit__  方法并调用它, 把释放资源的动作放在这个  __exit__  函数中就可以了; 另外, 对象还需要一个  __enter__  函数, 当进入  with 块时, 这个函数被调用, 而它的返回值将作为  as  后引用的值. 一个简单的例子是
 

class Test: 
  def __init__(self): 
    print 'init'
 
  def __enter__(self): 
    print 'enter'
    return self
 
  def __exit__(self, except_type, except_obj, tb): 
    print except_type 
    print except_obj 
    import traceback 
    print ''.join(traceback.format_tb(tb)) 
    print 'exit'
    return True
 
with Test() as t: 
  raise ValueError('kon!')

    执行这一段代码, 输出将会是
 

init 
enter 
<type 'exceptions.ValueError'> 
kon! 
 File "test.py", line 17, in <module> 
  raise ValueError('kon!') 
 
exit

     __exit__  函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果  with  块正常退出, 那么这些参数将都是  None . 返回  True  表示发生的异常已被处理, 不再继续向外抛出.

    简单的介绍到此为止, 详细的情况可以参考  PEP 343  (这数字真不错, 7 3 ).

下面介绍下 with 语句的实例用法 & 高级用法:

Python高端、大气、上档次的with语句

在说with语句之前,先看看一段简单的代码吧
 

lock = threading.Lock()
...
lock.acquire()
elem = heapq.heappop(heap)
lock.release()

很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。

虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
 

lock = threading.Lock()
...
lock.acquire()
try:
  elem = heapq.heappop(heap)
finally:
  lock.release()

这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
 

lock = threading.Lock()
...
with lock:
  elem = heapq.heappop(heap)

在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
 

with expression [as variable]:
  with-block

其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。

这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
 

with open('1.txt', encoding = 'utf-8') as fp:
  lines = fp.readlines()

无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
 

from contextlib import nested
...
with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out):
  ...

这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
 

from contextlib import closing
...
with closing(urllib.request.urlopen('http://www.yahoo.com')) as f:
  for line in f:
    sys.stdout.write(line)

 用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
 

def read_file(): 
  try: 
    f = open('yui', 'r') 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

    不过这显然无法运作, 因为  f  是在  try  块中定义的, 而在  finally  中无法引用.

    如果将  f  提取到  try  块外部, 如
 

def read_file(): 
   f = open('azusa', 'r') 
  try: 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.

    挫一点的方法自然是, 再套一层  try  吧
 

def read_file(): 
   try: 
    f = open('sawako', 'r') 
    try: 
      print ''.join(f.readlines()) 
    except: 
      print 'error occurs while reading file'
    finally: 
      f.close() 
   except: 
     print 'error occurs while reading file'

    当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.

    正规一点的方式是, 使用 Python 引入的  with  结构来解决, 如
 

def readFile(): 
  try: 
     with open('mio', 'r') as f: 
      print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'

    当文件打开失败时, 异常自然会被  except  到; 否则, 在  with  块结束之后, 打开的文件将自动关闭.

    除了打开文件, 还有其它这样可以用于  with  的东西么? 或者说, 怎么自定义一个什么东西, 让它能用于  with 呢?
    直接回答后一个问题吧, 秘密在于 Python 虚拟机在  with  块退出时会去寻找对象的  __exit__  方法并调用它, 把释放资源的动作放在这个  __exit__  函数中就可以了; 另外, 对象还需要一个  __enter__  函数, 当进入  with 块时, 这个函数被调用, 而它的返回值将作为  as  后引用的值. 一个简单的例子是
 

class Test: 
  def __init__(self): 
    print 'init'
 
  def __enter__(self): 
    print 'enter'
    return self
 
  def __exit__(self, except_type, except_obj, tb): 
    print except_type 
    print except_obj 
    import traceback 
    print ''.join(traceback.format_tb(tb)) 
    print 'exit'
    return True
 
with Test() as t: 
  raise ValueError('kon!')

    执行这一段代码, 输出将会是
 

init 
enter 
<type 'exceptions.ValueError'> 
kon! 
 File "test.py", line 17, in <module> 
  raise ValueError('kon!') 
 
exit

     __exit__  函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果  with  块正常退出, 那么这些参数将都是  None . 返回  True  表示发生的异常已被处理, 不再继续向外抛出.

    简单的介绍到此为止, 详细的情况可以参考  PEP 343  (这数字真不错, 7 3 ).

下面介绍下 with 语句的实例用法 & 高级用法:

Python高端、大气、上档次的with语句

在说with语句之前,先看看一段简单的代码吧
 

lock = threading.Lock()
...
lock.acquire()
elem = heapq.heappop(heap)
lock.release()

很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。

虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
 

lock = threading.Lock()
...
lock.acquire()
try:
  elem = heapq.heappop(heap)
finally:
  lock.release()

这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
 

lock = threading.Lock()
...
with lock:
  elem = heapq.heappop(heap)

在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
 

with expression [as variable]:
  with-block

其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。

这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
 

with open('1.txt', encoding = 'utf-8') as fp:
  lines = fp.readlines()

无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
 

from contextlib import nested
...
with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out):
  ...

这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
 

from contextlib import closing
...
with closing(urllib.request.urlopen('http://www.yahoo.com')) as f:
  for line in f:
    sys.stdout.write(line)

Python 相关文章推荐
用Python制作简单的朴素基数估计器的教程
Apr 01 Python
Python中用memcached来减少数据库查询次数的教程
Apr 07 Python
基于python脚本实现软件的注册功能(机器码+注册码机制)
Oct 09 Python
Python实现获取照片拍摄日期并重命名的方法
Sep 30 Python
python 实现selenium断言和验证的方法
Feb 13 Python
python获取微信企业号打卡数据并生成windows计划任务
Apr 30 Python
Django框架用户注销功能实现方法分析
May 28 Python
Python 进程之间共享数据(全局变量)的方法
Jul 16 Python
python 协程中的迭代器,生成器原理及应用实例详解
Oct 28 Python
基于python实现音乐播放器代码实例
Jul 01 Python
Python如何获取文件路径/目录
Sep 22 Python
Python:__eq__和__str__函数的使用示例
Sep 26 Python
python中的闭包用法实例详解
May 05 #Python
Python闭包实现计数器的方法
May 05 #Python
深入探究Python中变量的拷贝和作用域问题
May 05 #Python
Python使用metaclass实现Singleton模式的方法
May 05 #Python
python中查看变量内存地址的方法
May 05 #Python
Python中统计函数运行耗时的方法
May 05 #Python
Python调用命令行进度条的方法
May 05 #Python
You might like
骨王战斗力在公会成员中排不进前五,却当选了会长,原因竟是这样
2020/03/02 日漫
PHP clearstatcache()函数详解
2010/03/02 PHP
为PHP初学者的8点有效建议
2010/11/20 PHP
PHP flock 文件锁详细介绍
2012/12/29 PHP
php页面防重复提交方法总结
2013/11/25 PHP
php Calender(日历)代码分享
2014/01/03 PHP
PHP魔术方法使用方法汇总
2016/02/14 PHP
zen_cart实现支付前生成订单的方法
2016/05/06 PHP
利用Laravel生成Gravatar头像地址的优雅方法
2017/12/30 PHP
如何在PHP中使用AES加密算法加密数据
2020/06/24 PHP
List the Stored Procedures in a SQL Server database
2007/06/20 Javascript
JQuery获取文本框中字符长度的代码
2011/09/29 Javascript
JS中怎样判断undefined(比较不错的方法)
2014/03/27 Javascript
利用BootStrap弹出二级对话框的简单实现方法
2016/09/21 Javascript
详解AngularJS脏检查机制及$timeout的妙用
2017/06/19 Javascript
微信小程序使用checkbox显示多项选择框功能【附源码下载】
2017/12/11 Javascript
用Cordova打包Vue项目的方法步骤
2019/02/02 Javascript
详解如何在Vue项目中导出Excel
2019/04/19 Javascript
解决Echarts2竖直datazoom滑动后显示数据不全的问题
2020/07/20 Javascript
[49:35]2018DOTA2亚洲邀请赛3月30日 小组赛A组 KG VS TNC
2018/03/31 DOTA
[36:22]VP vs Serenity 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
[54:54]Newbee vs Serenity 2018国际邀请赛小组赛BO2 第一场 8.17
2018/08/18 DOTA
python通过zlib实现压缩与解压字符串的方法
2014/11/19 Python
在Python的struct模块中进行数据格式转换的方法
2015/06/17 Python
Python单例模式的两种实现方法
2017/08/14 Python
python调用百度语音识别实现大音频文件语音识别功能
2018/08/30 Python
python实现电子产品商店
2019/02/26 Python
python+mysql实现个人论文管理系统
2019/10/25 Python
100%植物性、有机、即食餐:Sakara Life
2018/10/25 全球购物
《小白兔和小灰兔》教学反思
2014/02/18 职场文书
市级绿色学校申报材料
2014/08/25 职场文书
乡镇挂职心得体会
2014/09/04 职场文书
初中班干部工作总结
2015/08/10 职场文书
python 如何将两个实数矩阵合并为一个复数矩阵
2021/05/19 Python
Jupyter notebook 更改文件打开的默认路径操作
2021/05/21 Python
浅谈MySQL之浅入深出页原理
2021/06/23 MySQL