简单介绍Python中的try和finally和with方法


Posted in Python onMay 05, 2015

用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
 

def read_file(): 
  try: 
    f = open('yui', 'r') 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

    不过这显然无法运作, 因为  f  是在  try  块中定义的, 而在  finally  中无法引用.

    如果将  f  提取到  try  块外部, 如
 

def read_file(): 
   f = open('azusa', 'r') 
  try: 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.

    挫一点的方法自然是, 再套一层  try  吧
 

def read_file(): 
   try: 
    f = open('sawako', 'r') 
    try: 
      print ''.join(f.readlines()) 
    except: 
      print 'error occurs while reading file'
    finally: 
      f.close() 
   except: 
     print 'error occurs while reading file'

    当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.

    正规一点的方式是, 使用 Python 引入的  with  结构来解决, 如
 

def readFile(): 
  try: 
     with open('mio', 'r') as f: 
      print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'

    当文件打开失败时, 异常自然会被  except  到; 否则, 在  with  块结束之后, 打开的文件将自动关闭.

    除了打开文件, 还有其它这样可以用于  with  的东西么? 或者说, 怎么自定义一个什么东西, 让它能用于  with 呢?
    直接回答后一个问题吧, 秘密在于 Python 虚拟机在  with  块退出时会去寻找对象的  __exit__  方法并调用它, 把释放资源的动作放在这个  __exit__  函数中就可以了; 另外, 对象还需要一个  __enter__  函数, 当进入  with 块时, 这个函数被调用, 而它的返回值将作为  as  后引用的值. 一个简单的例子是
 

class Test: 
  def __init__(self): 
    print 'init'
 
  def __enter__(self): 
    print 'enter'
    return self
 
  def __exit__(self, except_type, except_obj, tb): 
    print except_type 
    print except_obj 
    import traceback 
    print ''.join(traceback.format_tb(tb)) 
    print 'exit'
    return True
 
with Test() as t: 
  raise ValueError('kon!')

    执行这一段代码, 输出将会是
 

init 
enter 
<type 'exceptions.ValueError'> 
kon! 
 File "test.py", line 17, in <module> 
  raise ValueError('kon!') 
 
exit

     __exit__  函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果  with  块正常退出, 那么这些参数将都是  None . 返回  True  表示发生的异常已被处理, 不再继续向外抛出.

    简单的介绍到此为止, 详细的情况可以参考  PEP 343  (这数字真不错, 7 3 ).

下面介绍下 with 语句的实例用法 & 高级用法:

Python高端、大气、上档次的with语句

在说with语句之前,先看看一段简单的代码吧
 

lock = threading.Lock()
...
lock.acquire()
elem = heapq.heappop(heap)
lock.release()

很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。

虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
 

lock = threading.Lock()
...
lock.acquire()
try:
  elem = heapq.heappop(heap)
finally:
  lock.release()

这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
 

lock = threading.Lock()
...
with lock:
  elem = heapq.heappop(heap)

在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
 

with expression [as variable]:
  with-block

其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。

这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
 

with open('1.txt', encoding = 'utf-8') as fp:
  lines = fp.readlines()

无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
 

from contextlib import nested
...
with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out):
  ...

这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
 

from contextlib import closing
...
with closing(urllib.request.urlopen('http://www.yahoo.com')) as f:
  for line in f:
    sys.stdout.write(line)

 用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
 

def read_file(): 
  try: 
    f = open('yui', 'r') 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

    不过这显然无法运作, 因为  f  是在  try  块中定义的, 而在  finally  中无法引用.

    如果将  f  提取到  try  块外部, 如
 

def read_file(): 
   f = open('azusa', 'r') 
  try: 
    print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'
  finally: 
    f.close()

那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.

    挫一点的方法自然是, 再套一层  try  吧
 

def read_file(): 
   try: 
    f = open('sawako', 'r') 
    try: 
      print ''.join(f.readlines()) 
    except: 
      print 'error occurs while reading file'
    finally: 
      f.close() 
   except: 
     print 'error occurs while reading file'

    当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.

    正规一点的方式是, 使用 Python 引入的  with  结构来解决, 如
 

def readFile(): 
  try: 
     with open('mio', 'r') as f: 
      print ''.join(f.readlines()) 
  except: 
    print 'error occurs while reading file'

    当文件打开失败时, 异常自然会被  except  到; 否则, 在  with  块结束之后, 打开的文件将自动关闭.

    除了打开文件, 还有其它这样可以用于  with  的东西么? 或者说, 怎么自定义一个什么东西, 让它能用于  with 呢?
    直接回答后一个问题吧, 秘密在于 Python 虚拟机在  with  块退出时会去寻找对象的  __exit__  方法并调用它, 把释放资源的动作放在这个  __exit__  函数中就可以了; 另外, 对象还需要一个  __enter__  函数, 当进入  with 块时, 这个函数被调用, 而它的返回值将作为  as  后引用的值. 一个简单的例子是
 

class Test: 
  def __init__(self): 
    print 'init'
 
  def __enter__(self): 
    print 'enter'
    return self
 
  def __exit__(self, except_type, except_obj, tb): 
    print except_type 
    print except_obj 
    import traceback 
    print ''.join(traceback.format_tb(tb)) 
    print 'exit'
    return True
 
with Test() as t: 
  raise ValueError('kon!')

    执行这一段代码, 输出将会是
 

init 
enter 
<type 'exceptions.ValueError'> 
kon! 
 File "test.py", line 17, in <module> 
  raise ValueError('kon!') 
 
exit

     __exit__  函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果  with  块正常退出, 那么这些参数将都是  None . 返回  True  表示发生的异常已被处理, 不再继续向外抛出.

    简单的介绍到此为止, 详细的情况可以参考  PEP 343  (这数字真不错, 7 3 ).

下面介绍下 with 语句的实例用法 & 高级用法:

Python高端、大气、上档次的with语句

在说with语句之前,先看看一段简单的代码吧
 

lock = threading.Lock()
...
lock.acquire()
elem = heapq.heappop(heap)
lock.release()

很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。

虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
 

lock = threading.Lock()
...
lock.acquire()
try:
  elem = heapq.heappop(heap)
finally:
  lock.release()

这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
 

lock = threading.Lock()
...
with lock:
  elem = heapq.heappop(heap)

在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
 

with expression [as variable]:
  with-block

其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。

这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
 

with open('1.txt', encoding = 'utf-8') as fp:
  lines = fp.readlines()

无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
 

from contextlib import nested
...
with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out):
  ...

这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
 

from contextlib import closing
...
with closing(urllib.request.urlopen('http://www.yahoo.com')) as f:
  for line in f:
    sys.stdout.write(line)

Python 相关文章推荐
python运行时间的几种方法
Jun 17 Python
python使用Apriori算法进行关联性解析
Dec 21 Python
Python中矩阵创建和矩阵运算方法
Aug 04 Python
对python requests的content和text方法的区别详解
Oct 11 Python
Python实现的ftp服务器功能详解【附源码下载】
Jun 26 Python
python模块导入的方法
Oct 24 Python
Pytorch 之修改Tensor部分值方式
Dec 27 Python
Python+PyQt5+MySQL实现天气管理系统
Jun 16 Python
Python实现一个优先级队列的方法
Jul 31 Python
Python连接Impala实现步骤解析
Aug 04 Python
Django如何实现密码错误报错提醒
Sep 04 Python
Python如何让字典保持有序排列
Apr 29 Python
python中的闭包用法实例详解
May 05 #Python
Python闭包实现计数器的方法
May 05 #Python
深入探究Python中变量的拷贝和作用域问题
May 05 #Python
Python使用metaclass实现Singleton模式的方法
May 05 #Python
python中查看变量内存地址的方法
May 05 #Python
Python中统计函数运行耗时的方法
May 05 #Python
Python调用命令行进度条的方法
May 05 #Python
You might like
PHP中全面阻止SQL注入式攻击分析小结
2012/01/30 PHP
PHP二进制与字符串之间的相互转换教程
2016/10/14 PHP
正则表达式判断是否存在中文和全角字符和判断包含中文字符串长度
2008/09/27 Javascript
JS分割字符串并放入数组的函数
2011/07/04 Javascript
当自定义数据属性为json格式字符串时jQuery的data api问题探讨
2013/02/18 Javascript
js字符串转换成数字与数字转换成字符串的实现方法
2014/01/08 Javascript
用循环或if语句从json中取数据示例
2014/08/18 Javascript
移动端H5开发 Turn.js实现很棒的翻书效果
2016/06/20 Javascript
JS中常用的正则表达式
2016/09/29 Javascript
利用Vue.js实现checkbox的全选反选效果
2017/01/18 Javascript
详解JavaScript RegExp对象
2017/02/04 Javascript
Nodejs 发送Post请求功能(发短信验证码例子)
2017/02/09 NodeJs
详谈Ajax请求中的async:false/true的作用(ajax 在外部调用问题)
2017/02/10 Javascript
D3.js进阶系列之CSV表格文件的读取详解
2017/06/06 Javascript
JS失效 提示HTML1114: (UNICODE 字节顺序标记)的代码页 utf-8 覆盖(META 标记)的冲突的代码页 utf-8
2017/06/23 Javascript
ng-repeat指令在迭代对象时的去重方法
2018/10/02 Javascript
一篇文章弄懂javascript中的执行栈与执行上下文
2019/08/09 Javascript
JS对日期操作封装代码实例
2019/11/08 Javascript
[54:51]Ti4 冒泡赛第二轮LGD vs C9 3
2014/07/14 DOTA
[00:43]2016完美“圣”典风云人物:单车宣传片
2016/12/02 DOTA
浅谈Python 对象内存占用
2016/07/15 Python
Python使用numpy实现BP神经网络
2018/03/10 Python
详解用TensorFlow实现逻辑回归算法
2018/05/02 Python
python 获取字符串MD5值方法
2018/05/29 Python
python主线程捕获子线程的方法
2018/06/17 Python
JSON文件及Python对JSON文件的读写操作
2018/10/07 Python
Python 画出来六维图
2019/07/26 Python
利用Python脚本实现自动刷网课
2020/02/03 Python
Python如何实现在字符串里嵌入双引号或者单引号
2020/03/02 Python
Python HTTP下载文件并显示下载进度条功能的实现
2020/04/02 Python
Python之Matplotlib文字与注释的使用方法
2020/06/18 Python
python 使用递归的方式实现语义图片分割功能
2020/07/16 Python
html5跳转小程序wx-open-launch-weapp踩坑
2020/12/02 HTML / CSS
美国知名玩具品牌:Melissa & Doug
2016/08/16 全球购物
聘任书的写作格式及范文
2014/03/29 职场文书
go mod 安装依赖 unkown revision问题的解决方案
2021/05/06 Golang