Python OpenCV实现图像模板匹配详解


Posted in Python onApril 07, 2022

1.什么是模板匹配及模板匹配方法matchTemplate()

介绍

提供一个模板图像,一个目标图像,且满足模板图像是目标图像的一部分,从目标图像中寻找特定的模板图像的过程,即为模板匹配。OpenCV提供了matchTemplate()方法帮助我们实现模板匹配。

该方法语法如下:

cv2.matchTemplate(image, templ, method, result=None, mask=None)

其中

image 即目标图像

templ 即模板图像

method 是匹配的方式

mask 即掩模,可选。只有当method为cv2.TM_SQDIFF或cv2.TM_CCORR_NORMED时才支持此参数。

method参数可以是以下值:

参数值 描述
cv2.TM_SQDIFF 差值平方和匹配,也称平方差匹配。可以理解为是基于差异程度的匹配,差异程度越小,匹配程度越高。完全匹配时值差值平方和为0。
cv2.TM_SQDIFF_NORMED 相关匹配。 可以理解为是基于相似程度的匹配,相似程度越高,计算结果越大,匹配程度就越高。
cv2.TM_CCORR 标准相关匹配。 规则同上。
cv2.TM_CCORR_NORMED 相关系数匹配
cv2.TM_CCOEFF 相关系数匹配。也是基于相似程度的匹配,计算结果是一个-1到1的浮点数,1表示完全匹配,0表示毫无关系,-1表示两张图片亮度刚好相反。
cv2.TM_CCOEFF_NORMED 标准相关系数匹配,规则同上。

使用matchTemplate()方法,模板会将图像中的每一块区域都覆盖一遍,并每次都使用所选的method方法进行计算,每次的计算结果最后以一个二维数组的形式返回给我们。

素材准备

为方便展示,特准备以下图片素材:

选择世界名画《三英战吕布》(test.png),图像shape为(738, 675, 3):

Python OpenCV实现图像模板匹配详解

从中抠出一部分图像元素作为下边要用的模板素材。取材代码如下( 不建议截图,截图抠出来的不一定能保证尺寸):

import cv2
img = cv2.imread("test.png")

print(img.shape)
# 电灯
img1 = img[20:220, 320:480, :]
# 虎牢关牌匾
img2 = img[75:150, 200:310, :]
# 青龙刀
img3 = img[170:530, 575:650, :]
# 关云长
img4 = img[270:670, 160:330, :]


cv2.imshow("img0", img)
cv2.imshow("img1", img1)
cv2.imshow("img2", img2)
cv2.imshow("img3", img3)
cv2.imshow("img4", img4)
cv2.waitKey()
cv2.destroyAllWindows()

cv2.imwrite('template_pic1.jpg', img1)
cv2.imwrite('template_pic2.jpg', img2)
cv2.imwrite('template_pic3.jpg', img3)
cv2.imwrite('template_pic4.jpg', img4)

取出的模板素材如下:

电灯

Python OpenCV实现图像模板匹配详解

虎牢关牌匾

Python OpenCV实现图像模板匹配详解

青龙刀

Python OpenCV实现图像模板匹配详解

关云长

Python OpenCV实现图像模板匹配详解

2.单模板匹配

单模板匹配,即在匹配时中只使用到一个模板的匹配过程。具体又可以分为单目标匹配和多目标匹配。

2.1 单目标匹配

单目标匹配,即模板在目标图像中只匹配 匹配程度最高的一个匹配结果。

这需要找出这一次匹配结果所在位置的坐标来确定其位置,

OpenCV提供了cv2.minMAXLoc()来实现。

该方法参数为matchTemplate()的返回值,会返回一个元组,元组中有四个值,分别是最小值、最大值、最小值时图像左上角顶点坐标,最大值时图像左上角顶点坐标。

接下来,使用 电灯(template_pic1) 图片来匹配原图,并用红色的矩形在原图像中圈出模板图像,使用标准差值平方和的匹配方式,代码如下:

import cv2
img = cv2.imread("test.png")

templ = cv2.imread("template_pic1.jpg")
height, width, c = templ.shape
results = cv2.matchTemplate(img, templ, cv2.TM_SQDIFF_NORMED)
# 获取匹配结果中的最小值、最大值、最小值坐标和最大值坐标
minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(results)
resultPoint1 = minLoc
resultPoint2 = (resultPoint1[0] + width, resultPoint1[1] + height)
cv2.rectangle(img, resultPoint1, resultPoint2, (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

如图所示,成功标出了模板图。

Python OpenCV实现图像模板匹配详解

如果要从多幅图像中,找出与模板最匹配的结果,

以标准差值平方和的匹配方式为例,
则可以对这些图像进行遍历,并比较每幅图像对应结果中的最小值,找出最小值中的最小值,则为最佳匹配项。

以两幅图像为例,将原图翻转一次,生成一张新的图像(翻转后结果与原图较像,但差异巨大)

翻转产生素材(test1.png)

import cv2
img = cv2.imread("test.png")
dst1 = cv2.flip(img, 1)
cv2.imshow("dst1", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
cv2.imwrite('test1.png', dst1)        

Python OpenCV实现图像模板匹配详解

然后使用模板 关云长 (template_pic4.jpg)对两幅图像进行匹配,输出最佳匹配结果,并画红框展示:

import cv2

image = []
image.append(cv2.imread("test.png"))
image.append(cv2.imread("test1.png"))
templ = cv2.imread("template_pic4.jpg")
height, width, c = templ.shape

# 循环变量初始化
# 这里只是随便设定一个值,该值并无意义,只是为了定义该变量
# 使用TM_SQDIFF_NORMED计算方法,计算出的结果通常是小于1的,所以minValue可以设置为1。如果是TM_SQDIFF计算方法,则就不行了,计算出来的值会很大。代码就不再有效,需要把minMax设得更大,或者做其他修改。
index = -1
minValue = 1
minLoc1 = (0, 0)

# 遍历每幅图像
for i in range(0, len(image)):
    results = cv2.matchTemplate(image[i], templ, cv2.TM_SQDIFF_NORMED)
    min = cv2.minMaxLoc(results)[0]
    if min < minValue:
        minValue = min
        minLoc1 = cv2.minMaxLoc(results)[2]
        index = i

minLoc2 = (minLoc1[0] + width, minLoc1[1] + height)
cv2.rectangle(image[index], minLoc1, minLoc2, (0, 0, 255), 2)
cv2.imshow("result", image[index])
cv2.waitKey()
cv2.destroyAllWindows()

如图,test.png中的关云长与模板更为匹配。

Python OpenCV实现图像模板匹配详解

2.2 多目标匹配

多目标匹配,即在目标图像中匹配出所有与模板图像匹配的结果。可以使用相关匹配或相关系数匹配。

素材准备

还以原图像"test.png"为参照,

为了产生方便我们做示例的图像,我们在该图像的基础上多加一盏电灯,生成"test2.png"

import cv2
img = cv2.imread("test.png")
templ = cv2.imread("template_pic1.jpg")
img[20:220, 30:190, :] = templ
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
cv2.imwrite('test2.png', img)      

Python OpenCV实现图像模板匹配详解

多目标匹配

多目标匹配即对matchTemplate()匹配的总的结果,的计算情况数据,使用for循环遍历,并设定一个判断标准。

如使用标准相关系数(cv2.TM_CCOEFF_NORMED)的方法判断,如:如果计算值大于0.99,则我们认为匹配成功了。

使用电灯模板"template_pic1.jpg",匹配图像test2.png。并对匹配的结果用红色的矩形框标记。

代码示例如下:

import cv2
img = cv2.imread("test2.png")
templ = cv2.imread("template_pic1.jpg")
height, width, c = templ.shape
# 按照标准相关系数匹配
results = cv2.matchTemplate(img, templ, cv2.TM_CCOEFF_NORMED)
for y in range(len(results)):
    for x in range(len(results[y])):
        if results[y][x] > 0.99:
            cv2.rectangle(img, (x, y), (x + width, y + height), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行结果如下,成功匹配出了两盏灯。

Python OpenCV实现图像模板匹配详解

3.多模板匹配

多模板匹配,即进行了n次单模板的匹配过程。 

直接上示例:

在test.png中匹配电灯、青龙刀、虎牢关牌匾、关云长四个图像模板:

import cv2


def myMatchTemplate(img, templ):
    height, width, c = templ.shape
    results = cv2.matchTemplate(img, templ, cv2.TM_CCOEFF_NORMED)
    loc = list()
    for i in range(len(results)):
        for j in range(len(results[i])):
            if results[i][j] > 0.99:
                loc.append((j, i, j + width, i + height))
    return loc

# 读取原始图像
img = cv2.imread("test.png")  
# 模板列表
templs = list()  
templs.append(cv2.imread("template_pic1.jpg"))
templs.append(cv2.imread("template_pic2.jpg"))
templs.append(cv2.imread("template_pic3.jpg"))
templs.append(cv2.imread("template_pic4.jpg"))


loc = list()  
for t in templs: 
    loc += myMatchTemplate(img, t) 

# 遍历所有红框的坐标
for i in loc:  
    cv2.rectangle(img, (i[0], i[1]), (i[2], i[3]), (0, 0, 255), 2) 

cv2.imshow("img", img) 
cv2.waitKey() 
cv2.destroyAllWindows()

匹配效果如下:

Python OpenCV实现图像模板匹配详解

以上就是Python OpenCV实现图像模板匹配详解的详细内容,更多关于Python OpenCV图像模板匹配的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现将元祖转换成数组的方法
May 04 Python
Python操作串口的方法
Jun 17 Python
Python实现模拟登录及表单提交的方法
Jul 25 Python
python中selenium操作下拉滚动条的几种方法汇总
Jul 14 Python
Python依赖包整体迁移方法详解
Aug 15 Python
python实现两个文件夹的同步
Aug 29 Python
python matplotlib如何给图中的点加标签
Nov 14 Python
python 利用turtle库绘制笑脸和哭脸的例子
Nov 23 Python
python异常处理和日志处理方式
Dec 24 Python
Python开发之身份证验证库id_validator验证身份证号合法性及根据身份证号返回住址年龄等信息
Mar 20 Python
Python-split()函数实例用法讲解
Dec 18 Python
python 指定源路径来解决import问题的操作
Mar 04 Python
Python实现日志实时监测的示例详解
Python使用PyYAML库读写yaml文件的方法
Apr 06 #Python
python+pytest接口自动化之token关联登录的实现
Python图像处理库PIL详细使用说明
Apr 06 #Python
Python可变与不可变数据和深拷贝与浅拷贝
Apr 06 #Python
Python 全局空间和局部空间
Apr 06 #Python
Selenium浏览器自动化如何上传文件
Apr 06 #Python
You might like
经典的星际争霸,满是回忆的BGM
2020/04/09 星际争霸
全新的PDO数据库操作类php版(仅适用Mysql)
2012/07/22 PHP
PHP getallheaders无法获取自定义头(headers)的问题
2016/03/23 PHP
CI框架中redis缓存相关操作文件示例代码
2016/05/17 PHP
PHP实现图片批量打包下载功能
2017/03/01 PHP
PHP实现阿里大鱼短信验证的实例代码
2017/07/10 PHP
ThinkPHP框架下微信支付功能总结踩坑笔记
2019/04/10 PHP
JavaScript Archive Network 集合
2007/05/12 Javascript
javascript得到当前页的来路即前一页地址的方法
2014/02/18 Javascript
详解JS函数重载
2014/12/04 Javascript
Javascript 拖拽的一些简单的应用(逐行分析代码,让你轻松了拖拽的原理)
2015/01/23 Javascript
浅谈js对象属性 通过点(.) 和方括号([]) 的不同之处
2016/10/29 Javascript
基于jQuery实现火焰灯效果导航菜单
2017/01/04 Javascript
windows下create-react-app 升级至3.3.1版本踩坑记
2020/02/17 Javascript
详解JS函数防抖
2020/06/05 Javascript
vue实现移动端项目多行文本溢出省略
2020/07/29 Javascript
JavaScript WeakMap使用详解
2021/02/05 Javascript
[07:52]2014DOTA2 TI逗比武士游V社解说背后的故事
2014/07/10 DOTA
[01:06:54]DOTA2-DPC中国联赛 正赛 SAG vs DLG BO3 第二场 2月28日
2021/03/11 DOTA
在python中实现将一张图片剪切成四份的方法
2018/12/05 Python
Python字典深浅拷贝与循环方式方法详解
2020/02/09 Python
在Keras中利用np.random.shuffle()打乱数据集实例
2020/06/15 Python
浅析python 通⽤爬⾍和聚焦爬⾍
2020/09/28 Python
使用css3匹配手机屏幕横竖状态
2014/01/27 HTML / CSS
墨西哥网上购物:Linio墨西哥
2016/10/20 全球购物
Mixbook加拿大:照片书,照片卡,剪贴簿,年历和日历
2017/02/21 全球购物
梅西酒窖:Macy’s Wine Cellar
2018/01/07 全球购物
欧洲领先的火车票和大巴票预订平台:Trainline
2018/12/26 全球购物
德国家具购物网站:Möbel Höffner
2019/08/26 全球购物
Linux不知道文件后缀名怎么判断文件类型
2012/04/26 面试题
医药专业应届毕业生求职信范文
2014/01/01 职场文书
俄罗斯商务邀请函
2014/01/26 职场文书
党的群众路线教育实践活动总结报告
2014/04/28 职场文书
博士生导师推荐信
2014/07/08 职场文书
判缓刑人员个人思想汇报
2014/10/10 职场文书
2014年保卫科工作总结
2014/12/05 职场文书