Python OpenCV实现图像模板匹配详解


Posted in Python onApril 07, 2022

1.什么是模板匹配及模板匹配方法matchTemplate()

介绍

提供一个模板图像,一个目标图像,且满足模板图像是目标图像的一部分,从目标图像中寻找特定的模板图像的过程,即为模板匹配。OpenCV提供了matchTemplate()方法帮助我们实现模板匹配。

该方法语法如下:

cv2.matchTemplate(image, templ, method, result=None, mask=None)

其中

image 即目标图像

templ 即模板图像

method 是匹配的方式

mask 即掩模,可选。只有当method为cv2.TM_SQDIFF或cv2.TM_CCORR_NORMED时才支持此参数。

method参数可以是以下值:

参数值 描述
cv2.TM_SQDIFF 差值平方和匹配,也称平方差匹配。可以理解为是基于差异程度的匹配,差异程度越小,匹配程度越高。完全匹配时值差值平方和为0。
cv2.TM_SQDIFF_NORMED 相关匹配。 可以理解为是基于相似程度的匹配,相似程度越高,计算结果越大,匹配程度就越高。
cv2.TM_CCORR 标准相关匹配。 规则同上。
cv2.TM_CCORR_NORMED 相关系数匹配
cv2.TM_CCOEFF 相关系数匹配。也是基于相似程度的匹配,计算结果是一个-1到1的浮点数,1表示完全匹配,0表示毫无关系,-1表示两张图片亮度刚好相反。
cv2.TM_CCOEFF_NORMED 标准相关系数匹配,规则同上。

使用matchTemplate()方法,模板会将图像中的每一块区域都覆盖一遍,并每次都使用所选的method方法进行计算,每次的计算结果最后以一个二维数组的形式返回给我们。

素材准备

为方便展示,特准备以下图片素材:

选择世界名画《三英战吕布》(test.png),图像shape为(738, 675, 3):

Python OpenCV实现图像模板匹配详解

从中抠出一部分图像元素作为下边要用的模板素材。取材代码如下( 不建议截图,截图抠出来的不一定能保证尺寸):

import cv2
img = cv2.imread("test.png")

print(img.shape)
# 电灯
img1 = img[20:220, 320:480, :]
# 虎牢关牌匾
img2 = img[75:150, 200:310, :]
# 青龙刀
img3 = img[170:530, 575:650, :]
# 关云长
img4 = img[270:670, 160:330, :]


cv2.imshow("img0", img)
cv2.imshow("img1", img1)
cv2.imshow("img2", img2)
cv2.imshow("img3", img3)
cv2.imshow("img4", img4)
cv2.waitKey()
cv2.destroyAllWindows()

cv2.imwrite('template_pic1.jpg', img1)
cv2.imwrite('template_pic2.jpg', img2)
cv2.imwrite('template_pic3.jpg', img3)
cv2.imwrite('template_pic4.jpg', img4)

取出的模板素材如下:

电灯

Python OpenCV实现图像模板匹配详解

虎牢关牌匾

Python OpenCV实现图像模板匹配详解

青龙刀

Python OpenCV实现图像模板匹配详解

关云长

Python OpenCV实现图像模板匹配详解

2.单模板匹配

单模板匹配,即在匹配时中只使用到一个模板的匹配过程。具体又可以分为单目标匹配和多目标匹配。

2.1 单目标匹配

单目标匹配,即模板在目标图像中只匹配 匹配程度最高的一个匹配结果。

这需要找出这一次匹配结果所在位置的坐标来确定其位置,

OpenCV提供了cv2.minMAXLoc()来实现。

该方法参数为matchTemplate()的返回值,会返回一个元组,元组中有四个值,分别是最小值、最大值、最小值时图像左上角顶点坐标,最大值时图像左上角顶点坐标。

接下来,使用 电灯(template_pic1) 图片来匹配原图,并用红色的矩形在原图像中圈出模板图像,使用标准差值平方和的匹配方式,代码如下:

import cv2
img = cv2.imread("test.png")

templ = cv2.imread("template_pic1.jpg")
height, width, c = templ.shape
results = cv2.matchTemplate(img, templ, cv2.TM_SQDIFF_NORMED)
# 获取匹配结果中的最小值、最大值、最小值坐标和最大值坐标
minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(results)
resultPoint1 = minLoc
resultPoint2 = (resultPoint1[0] + width, resultPoint1[1] + height)
cv2.rectangle(img, resultPoint1, resultPoint2, (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

如图所示,成功标出了模板图。

Python OpenCV实现图像模板匹配详解

如果要从多幅图像中,找出与模板最匹配的结果,

以标准差值平方和的匹配方式为例,
则可以对这些图像进行遍历,并比较每幅图像对应结果中的最小值,找出最小值中的最小值,则为最佳匹配项。

以两幅图像为例,将原图翻转一次,生成一张新的图像(翻转后结果与原图较像,但差异巨大)

翻转产生素材(test1.png)

import cv2
img = cv2.imread("test.png")
dst1 = cv2.flip(img, 1)
cv2.imshow("dst1", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
cv2.imwrite('test1.png', dst1)        

Python OpenCV实现图像模板匹配详解

然后使用模板 关云长 (template_pic4.jpg)对两幅图像进行匹配,输出最佳匹配结果,并画红框展示:

import cv2

image = []
image.append(cv2.imread("test.png"))
image.append(cv2.imread("test1.png"))
templ = cv2.imread("template_pic4.jpg")
height, width, c = templ.shape

# 循环变量初始化
# 这里只是随便设定一个值,该值并无意义,只是为了定义该变量
# 使用TM_SQDIFF_NORMED计算方法,计算出的结果通常是小于1的,所以minValue可以设置为1。如果是TM_SQDIFF计算方法,则就不行了,计算出来的值会很大。代码就不再有效,需要把minMax设得更大,或者做其他修改。
index = -1
minValue = 1
minLoc1 = (0, 0)

# 遍历每幅图像
for i in range(0, len(image)):
    results = cv2.matchTemplate(image[i], templ, cv2.TM_SQDIFF_NORMED)
    min = cv2.minMaxLoc(results)[0]
    if min < minValue:
        minValue = min
        minLoc1 = cv2.minMaxLoc(results)[2]
        index = i

minLoc2 = (minLoc1[0] + width, minLoc1[1] + height)
cv2.rectangle(image[index], minLoc1, minLoc2, (0, 0, 255), 2)
cv2.imshow("result", image[index])
cv2.waitKey()
cv2.destroyAllWindows()

如图,test.png中的关云长与模板更为匹配。

Python OpenCV实现图像模板匹配详解

2.2 多目标匹配

多目标匹配,即在目标图像中匹配出所有与模板图像匹配的结果。可以使用相关匹配或相关系数匹配。

素材准备

还以原图像"test.png"为参照,

为了产生方便我们做示例的图像,我们在该图像的基础上多加一盏电灯,生成"test2.png"

import cv2
img = cv2.imread("test.png")
templ = cv2.imread("template_pic1.jpg")
img[20:220, 30:190, :] = templ
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
cv2.imwrite('test2.png', img)      

Python OpenCV实现图像模板匹配详解

多目标匹配

多目标匹配即对matchTemplate()匹配的总的结果,的计算情况数据,使用for循环遍历,并设定一个判断标准。

如使用标准相关系数(cv2.TM_CCOEFF_NORMED)的方法判断,如:如果计算值大于0.99,则我们认为匹配成功了。

使用电灯模板"template_pic1.jpg",匹配图像test2.png。并对匹配的结果用红色的矩形框标记。

代码示例如下:

import cv2
img = cv2.imread("test2.png")
templ = cv2.imread("template_pic1.jpg")
height, width, c = templ.shape
# 按照标准相关系数匹配
results = cv2.matchTemplate(img, templ, cv2.TM_CCOEFF_NORMED)
for y in range(len(results)):
    for x in range(len(results[y])):
        if results[y][x] > 0.99:
            cv2.rectangle(img, (x, y), (x + width, y + height), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行结果如下,成功匹配出了两盏灯。

Python OpenCV实现图像模板匹配详解

3.多模板匹配

多模板匹配,即进行了n次单模板的匹配过程。 

直接上示例:

在test.png中匹配电灯、青龙刀、虎牢关牌匾、关云长四个图像模板:

import cv2


def myMatchTemplate(img, templ):
    height, width, c = templ.shape
    results = cv2.matchTemplate(img, templ, cv2.TM_CCOEFF_NORMED)
    loc = list()
    for i in range(len(results)):
        for j in range(len(results[i])):
            if results[i][j] > 0.99:
                loc.append((j, i, j + width, i + height))
    return loc

# 读取原始图像
img = cv2.imread("test.png")  
# 模板列表
templs = list()  
templs.append(cv2.imread("template_pic1.jpg"))
templs.append(cv2.imread("template_pic2.jpg"))
templs.append(cv2.imread("template_pic3.jpg"))
templs.append(cv2.imread("template_pic4.jpg"))


loc = list()  
for t in templs: 
    loc += myMatchTemplate(img, t) 

# 遍历所有红框的坐标
for i in loc:  
    cv2.rectangle(img, (i[0], i[1]), (i[2], i[3]), (0, 0, 255), 2) 

cv2.imshow("img", img) 
cv2.waitKey() 
cv2.destroyAllWindows()

匹配效果如下:

Python OpenCV实现图像模板匹配详解

以上就是Python OpenCV实现图像模板匹配详解的详细内容,更多关于Python OpenCV图像模板匹配的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python设计模式之观察者模式实例
Apr 26 Python
使用Python编写提取日志中的中文的脚本的方法
Apr 30 Python
pandas apply 函数 实现多进程的示例讲解
Apr 20 Python
Django基础知识与基本应用入门教程
Jul 20 Python
Python学习笔记之集合的概念和简单使用示例
Aug 22 Python
Python的bit_length函数来二进制的位数方法
Aug 27 Python
Pandas实现dataframe和np.array的相互转换
Nov 30 Python
Python 实现训练集、测试集随机划分
Jan 08 Python
pytorch方法测试——激活函数(ReLU)详解
Jan 15 Python
Python+Django+MySQL实现基于Web版的增删改查的示例代码
May 13 Python
python 获取计算机的网卡信息
Feb 18 Python
Python中OpenCV实现简单车牌字符切割
Jun 11 Python
Python实现日志实时监测的示例详解
Python使用PyYAML库读写yaml文件的方法
Apr 06 #Python
python+pytest接口自动化之token关联登录的实现
Python图像处理库PIL详细使用说明
Apr 06 #Python
Python可变与不可变数据和深拷贝与浅拷贝
Apr 06 #Python
Python 全局空间和局部空间
Apr 06 #Python
Selenium浏览器自动化如何上传文件
Apr 06 #Python
You might like
利用Memcached在php下实现session机制 替换PHP的原生session支持
2010/08/21 PHP
php 目录遍历、删除 函数的使用介绍
2013/04/28 PHP
php注册系统和使用Xajax即时验证用户名是否被占用
2017/08/31 PHP
javascript removeChild 使用注意事项
2009/04/11 Javascript
有趣的JavaScript数组长度问题代码说明
2011/01/20 Javascript
jQuery子属性过滤选择器用法分析
2015/02/10 Javascript
AngularJs  unit-testing(单元测试)详解
2016/09/02 Javascript
js图片轮播手动切换特效
2017/01/12 Javascript
js 获取html5的data属性实现方法
2017/07/28 Javascript
JavaScript中的一些隐式转换和总结(推荐)
2017/12/22 Javascript
JavaScript中字符串的常用操作方法及特殊字符
2018/03/18 Javascript
JS 数组随机洗牌的实例代码
2018/09/12 Javascript
用npm-run实现自动化任务的方法示例
2019/01/14 Javascript
vue2.0 获取从http接口中获取数据,组件开发,路由配置方式
2019/11/04 Javascript
Tensorflow中的placeholder和feed_dict的使用
2018/07/09 Python
pandas 透视表中文字段排序方法
2018/11/16 Python
pandas dataframe添加表格框线输出的方法
2019/02/08 Python
Django保护敏感信息的方法示例
2019/05/09 Python
Django 拆分model和view的实现方法
2019/08/16 Python
Python面向对象之Web静态服务器
2019/09/03 Python
python hash每次调用结果不同的原因
2019/11/21 Python
利用setuptools打包python程序的方法步骤
2020/01/18 Python
详解Open Folder as PyCharm Project怎么添加的方法
2020/12/29 Python
英国知名的护肤彩妆与时尚配饰大型综合零售电商:Unineed
2016/11/21 全球购物
Tarte Cosmetics官网:美国最受欢迎的化妆品公司之一
2017/08/24 全球购物
美国高级工作服品牌:Carhartt
2018/01/25 全球购物
舞蹈教师自荐信
2014/01/27 职场文书
小学美术教学反思
2014/02/01 职场文书
小学优秀教育工作者事迹材料
2014/05/09 职场文书
论群众路线学习笔记
2014/11/06 职场文书
体育教师个人总结
2015/02/09 职场文书
2015年度工程师评职称工作总结
2015/10/14 职场文书
nginx location中多个if里面proxy_pass的方法
2021/03/31 Servers
python 机器学习的标准化、归一化、正则化、离散化和白化
2021/04/16 Python
Vue+Element UI实现概要小弹窗的全过程
2021/05/30 Vue.js
python编程项目中线上问题排查与解决
2021/11/01 Python