深入解析神经网络从原理到实现


Posted in Python onJuly 26, 2019

1.简单介绍

在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:

结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。

激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。

学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

2.初识神经网络

如上文所说,神经网络主要包括三个部分:结构、激励函数、学习规则。图1是一个三层的神经网络,输入层有d个节点,隐层有q个节点,输出层有l个节点。除了输入层,每一层的节点都包含一个非线性变换。

深入解析神经网络从原理到实现 

图1

那么为什么要进行非线性变换呢?

(1)如果只进行线性变换,那么即使是多层的神经网络,依然只有一层的效果。类似于0.6*(0.2x1+0.3x2)=0.12x1+0.18x2。
(2)进行非线性变化,可以使得神经网络可以拟合任意一个函数,图2是一个四层网络的图。

深入解析神经网络从原理到实现 

图2

下面使用数学公式描述每一个神经元工作的方式

(1)输出x
(2)计算z=w*x
(3)输出new_x = f(z),这里的f是一个函数,可以是sigmoid、tanh、relu等,f就是上文所说到的激励函数。

3.反向传播(bp)算法

有了上面的网络结构和激励函数之后,这个网络是如何学习参数(学习规则)的呢?

首先我们先定义下本文使用的激活函数、目标函数

(1)激活函数(sigmoid):深入解析神经网络从原理到实现

def sigmoid(z):
  return 1.0/(1.0+np.exp(-z))

sigmoid函数有一个十分重要的性质:深入解析神经网络从原理到实现,即计算导数十分方便。

def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

下面给出一个简单的证明:深入解析神经网络从原理到实现

(2)目标函数(差的平方和)深入解析神经网络从原理到实现,公式中的1/2是为了计算导数方便。

然后,这个网络是如何运作的

(1)数据从输入层到输出层,经过各种非线性变换的过程即前向传播。

def feedforward(self, a):
  for b, w in zip(self.biases, self.weights):
    a = sigmoid(np.dot(w, a)+b)
  return a

其中,初始的权重(w)和偏置(b)是随机赋值的

biases = [np.random.randn(y, 1) for y in sizes[1:]]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

(2)参数更新,即反向传播

在写代码之前,先进行推导,即利用梯度下降更新参数,以上面的网络结构(图1)为例

(1)输出层与隐层之间的参数更新

深入解析神经网络从原理到实现

(2)隐层与输入层之间的参数更新

深入解析神经网络从原理到实现

有两点需要强调下:

(2)中的结果比(1)中的结果多了一个求和公式,这是因为计算隐层与输入层之间的参数时,输出层与隐层的每一个节点都有影响。

(2)中参数更新的结果可以复用(1)中的参数更新结果,从某种程度上,与反向传播这个算法名称不谋而合,不得不惊叹。

def backprop(self, x, y):
  """返回一个元组(nabla_b, nabla_w)代表目标函数的梯度."""
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # feedforward
  activation = x
  activations = [x] # list to store all the activations, layer by layer
  zs = [] # list to store all the z vectors, layer by layer
  for b, w in zip(self.biases, self.weights):
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # backward pass
  delta = self.cost_derivative(activations[-1], y) * \
    sigmoid_prime(zs[-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta, activations[-2].transpose())
  """l = 1 表示最后一层神经元,l = 2 是倒数第二层神经元, 依此类推."""
  for l in xrange(2, self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
  return (nabla_b, nabla_w)

4.完整代码实现

# -*- coding: utf-8 -*-

import random
import numpy as np

class Network(object):

  def __init__(self, sizes):
  """参数sizes表示每一层神经元的个数,如[2,3,1],表示第一层有2个神经元,第二层有3个神经元,第三层有1个神经元."""
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(sizes[:-1], sizes[1:])]

  def feedforward(self, a):
    """前向传播"""
    for b, w in zip(self.biases, self.weights):
      a = sigmoid(np.dot(w, a)+b)
    return a

  def SGD(self, training_data, epochs, mini_batch_size, eta,
      test_data=None):
    """随机梯度下降"""
    if test_data: 
      n_test = len(test_data)
    n = len(training_data)
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [
        training_data[k:k+mini_batch_size]
        for k in xrange(0, n, mini_batch_size)]
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta)
      if test_data:
        print "Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test)
      else:
        print "Epoch {0} complete".format(j)

  def update_mini_batch(self, mini_batch, eta):
    """使用后向传播算法进行参数更新.mini_batch是一个元组(x, y)的列表、eta是学习速率"""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]

  def backprop(self, x, y):
    """返回一个元组(nabla_b, nabla_w)代表目标函数的梯度."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # 前向传播
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases, self.weights):
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
    # backward pass
    delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose())
    """l = 1 表示最后一层神经元,l = 2 是倒数第二层神经元, 依此类推."""
    for l in xrange(2, self.num_layers):
      z = zs[-l]
      sp = sigmoid_prime(z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
    return (nabla_b, nabla_w)

  def evaluate(self, test_data):
    """返回分类正确的个数"""
    test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
    return sum(int(x == y) for (x, y) in test_results)

  def cost_derivative(self, output_activations, y):
    return (output_activations-y)

def sigmoid(z):
  return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
  """sigmoid函数的导数"""
  return sigmoid(z)*(1-sigmoid(z))

5.简单应用

# -*- coding: utf-8 -*-

from network import *

def vectorized_result(j,nclass):
  """离散数据进行one-hot"""
  e = np.zeros((nclass, 1))
  e[j] = 1.0
  return e

def get_format_data(X,y,isTest):
  ndim = X.shape[1]
  nclass = len(np.unique(y))
  inputs = [np.reshape(x, (ndim, 1)) for x in X]
  if not isTest:
    results = [vectorized_result(y,nclass) for y in y]
  else:
    results = y
  data = zip(inputs, results)
  return data

#随机生成数据
from sklearn.datasets import *
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
ndim = X.shape[1]
nclass = len(np.unique(y))

#划分训练、测试集
from sklearn.cross_validation import train_test_split
train_x,test_x,train_y,test_y = train_test_split(X,y,test_size=0.2,random_state=0)

training_data = get_format_data(train_x,train_y,False)
test_data = get_format_data(test_x,test_y,True)

net = Network(sizes=[ndim,10,nclass])
net.SGD(training_data=training_data,epochs=5,mini_batch_size=10,eta=0.1,test_data=test_data)

参考文献
(1)周志华《机器学习》
(2)https://github.com/mnielsen/neural-networks-and-deep-learning
(3)https://zhuanlan.zhihu.com/p/21525237

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中Django框架下的staticfiles使用简介
May 30 Python
python如何生成网页验证码
Jul 28 Python
python之线程通过信号pyqtSignal刷新ui的方法
Jan 11 Python
python实现弹跳小球
May 13 Python
Python任意字符串转16, 32, 64进制的方法
Jun 12 Python
使用Python求解带约束的最优化问题详解
Feb 11 Python
python中的 zip函数详解及用法举例
Feb 16 Python
python GUI库图形界面开发之PyQt5菜单栏控件QMenuBar的详细使用方法与实例
Feb 28 Python
通过python-pptx模块操作ppt文件的方法
Dec 26 Python
Python入门之基础语法详解
May 11 Python
python基础之文件操作
Oct 24 Python
python程序的组织结构详解
Dec 06 Python
python单例模式的多种实现方法
Jul 26 #Python
django的ORM操作 增加和查询
Jul 26 #Python
Django在pycharm下修改默认启动端口的方法
Jul 26 #Python
Python解析命令行读取参数之argparse模块
Jul 26 #Python
Django Rest framework三种分页方式详解
Jul 26 #Python
浅析Windows 嵌入python解释器的过程
Jul 26 #Python
python flask几分钟实现web服务的例子
Jul 26 #Python
You might like
PHP与Ajax相结合实现登录验证小Demo
2016/03/16 PHP
php查询操作实现投票功能
2016/05/09 PHP
php 解决扫描二维码下载跳转问题
2017/01/13 PHP
PHP代码重构方法漫谈
2018/04/17 PHP
jQuery.Validate 使用笔记(jQuery Validation范例 )
2010/06/25 Javascript
深入理解JavaScript定时机制
2010/10/29 Javascript
javascript来定义类的规范小结
2010/11/19 Javascript
js 判断一个元素是否在页面中存在
2012/12/27 Javascript
javascript与cookie 的问题详解
2013/11/11 Javascript
JavaScript link方法入门实例(给字符串加上超链接)
2014/10/17 Javascript
js运动动画的八个知识点
2015/03/12 Javascript
Javascript模仿淘宝信用评价实例(附源码)
2015/11/26 Javascript
jquery 重写 ajax提交并判断权限后 使用load方法报错解决方法
2016/01/19 Javascript
ECHO.js 纯javascript轻量级延迟加载的实例代码
2016/05/24 Javascript
JavaScript使用链式方法封装jQuery中CSS()方法示例
2017/04/07 jQuery
详解jQuery中关于Ajax的几个常用的函数
2017/07/17 jQuery
对存在JavaScript隐式类型转换的四种情况的总结(必看篇)
2017/08/31 Javascript
在nginx上部署vue项目(history模式)的方法
2017/12/28 Javascript
React Native 自定义下拉刷新上拉加载的列表的示例
2018/03/01 Javascript
webpack4之SplitChunksPlugin使用指南
2018/06/12 Javascript
JavaScript中toLocaleString()和toString()的区别实例分析
2018/08/14 Javascript
js使用Promise实现简单的Ajax缓存
2018/11/14 Javascript
微信小程序图片右边加两行文字的代码
2020/04/23 Javascript
处理JavaScript值为undefined的7个小技巧
2020/07/28 Javascript
JavaScript 实现轮播图特效的示例
2020/11/05 Javascript
[02:44]DOTA2英雄基础教程 克林克兹
2014/01/15 DOTA
Python3.6使用tesseract-ocr的正确方法
2018/10/17 Python
python 字典 setdefault()和get()方法比较详解
2019/08/07 Python
Django之模板层的实现代码
2019/09/09 Python
python实现计算器功能
2019/10/31 Python
canvas实现二维码和图片合成的示例代码
2018/08/01 HTML / CSS
硕士研究生自我鉴定范文
2013/12/27 职场文书
人民调解员先进事迹材料
2014/05/08 职场文书
2015安全保卫工作总结
2015/04/25 职场文书
新年晚会主持词开场白
2015/05/28 职场文书
Python 匹配文本并在其上一行追加文本
2022/05/11 Python