深入解析神经网络从原理到实现


Posted in Python onJuly 26, 2019

1.简单介绍

在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:

结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。

激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。

学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

2.初识神经网络

如上文所说,神经网络主要包括三个部分:结构、激励函数、学习规则。图1是一个三层的神经网络,输入层有d个节点,隐层有q个节点,输出层有l个节点。除了输入层,每一层的节点都包含一个非线性变换。

深入解析神经网络从原理到实现 

图1

那么为什么要进行非线性变换呢?

(1)如果只进行线性变换,那么即使是多层的神经网络,依然只有一层的效果。类似于0.6*(0.2x1+0.3x2)=0.12x1+0.18x2。
(2)进行非线性变化,可以使得神经网络可以拟合任意一个函数,图2是一个四层网络的图。

深入解析神经网络从原理到实现 

图2

下面使用数学公式描述每一个神经元工作的方式

(1)输出x
(2)计算z=w*x
(3)输出new_x = f(z),这里的f是一个函数,可以是sigmoid、tanh、relu等,f就是上文所说到的激励函数。

3.反向传播(bp)算法

有了上面的网络结构和激励函数之后,这个网络是如何学习参数(学习规则)的呢?

首先我们先定义下本文使用的激活函数、目标函数

(1)激活函数(sigmoid):深入解析神经网络从原理到实现

def sigmoid(z):
  return 1.0/(1.0+np.exp(-z))

sigmoid函数有一个十分重要的性质:深入解析神经网络从原理到实现,即计算导数十分方便。

def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

下面给出一个简单的证明:深入解析神经网络从原理到实现

(2)目标函数(差的平方和)深入解析神经网络从原理到实现,公式中的1/2是为了计算导数方便。

然后,这个网络是如何运作的

(1)数据从输入层到输出层,经过各种非线性变换的过程即前向传播。

def feedforward(self, a):
  for b, w in zip(self.biases, self.weights):
    a = sigmoid(np.dot(w, a)+b)
  return a

其中,初始的权重(w)和偏置(b)是随机赋值的

biases = [np.random.randn(y, 1) for y in sizes[1:]]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

(2)参数更新,即反向传播

在写代码之前,先进行推导,即利用梯度下降更新参数,以上面的网络结构(图1)为例

(1)输出层与隐层之间的参数更新

深入解析神经网络从原理到实现

(2)隐层与输入层之间的参数更新

深入解析神经网络从原理到实现

有两点需要强调下:

(2)中的结果比(1)中的结果多了一个求和公式,这是因为计算隐层与输入层之间的参数时,输出层与隐层的每一个节点都有影响。

(2)中参数更新的结果可以复用(1)中的参数更新结果,从某种程度上,与反向传播这个算法名称不谋而合,不得不惊叹。

def backprop(self, x, y):
  """返回一个元组(nabla_b, nabla_w)代表目标函数的梯度."""
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # feedforward
  activation = x
  activations = [x] # list to store all the activations, layer by layer
  zs = [] # list to store all the z vectors, layer by layer
  for b, w in zip(self.biases, self.weights):
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # backward pass
  delta = self.cost_derivative(activations[-1], y) * \
    sigmoid_prime(zs[-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta, activations[-2].transpose())
  """l = 1 表示最后一层神经元,l = 2 是倒数第二层神经元, 依此类推."""
  for l in xrange(2, self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
  return (nabla_b, nabla_w)

4.完整代码实现

# -*- coding: utf-8 -*-

import random
import numpy as np

class Network(object):

  def __init__(self, sizes):
  """参数sizes表示每一层神经元的个数,如[2,3,1],表示第一层有2个神经元,第二层有3个神经元,第三层有1个神经元."""
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(sizes[:-1], sizes[1:])]

  def feedforward(self, a):
    """前向传播"""
    for b, w in zip(self.biases, self.weights):
      a = sigmoid(np.dot(w, a)+b)
    return a

  def SGD(self, training_data, epochs, mini_batch_size, eta,
      test_data=None):
    """随机梯度下降"""
    if test_data: 
      n_test = len(test_data)
    n = len(training_data)
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [
        training_data[k:k+mini_batch_size]
        for k in xrange(0, n, mini_batch_size)]
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta)
      if test_data:
        print "Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test)
      else:
        print "Epoch {0} complete".format(j)

  def update_mini_batch(self, mini_batch, eta):
    """使用后向传播算法进行参数更新.mini_batch是一个元组(x, y)的列表、eta是学习速率"""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]

  def backprop(self, x, y):
    """返回一个元组(nabla_b, nabla_w)代表目标函数的梯度."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # 前向传播
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases, self.weights):
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
    # backward pass
    delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose())
    """l = 1 表示最后一层神经元,l = 2 是倒数第二层神经元, 依此类推."""
    for l in xrange(2, self.num_layers):
      z = zs[-l]
      sp = sigmoid_prime(z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
    return (nabla_b, nabla_w)

  def evaluate(self, test_data):
    """返回分类正确的个数"""
    test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
    return sum(int(x == y) for (x, y) in test_results)

  def cost_derivative(self, output_activations, y):
    return (output_activations-y)

def sigmoid(z):
  return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
  """sigmoid函数的导数"""
  return sigmoid(z)*(1-sigmoid(z))

5.简单应用

# -*- coding: utf-8 -*-

from network import *

def vectorized_result(j,nclass):
  """离散数据进行one-hot"""
  e = np.zeros((nclass, 1))
  e[j] = 1.0
  return e

def get_format_data(X,y,isTest):
  ndim = X.shape[1]
  nclass = len(np.unique(y))
  inputs = [np.reshape(x, (ndim, 1)) for x in X]
  if not isTest:
    results = [vectorized_result(y,nclass) for y in y]
  else:
    results = y
  data = zip(inputs, results)
  return data

#随机生成数据
from sklearn.datasets import *
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
ndim = X.shape[1]
nclass = len(np.unique(y))

#划分训练、测试集
from sklearn.cross_validation import train_test_split
train_x,test_x,train_y,test_y = train_test_split(X,y,test_size=0.2,random_state=0)

training_data = get_format_data(train_x,train_y,False)
test_data = get_format_data(test_x,test_y,True)

net = Network(sizes=[ndim,10,nclass])
net.SGD(training_data=training_data,epochs=5,mini_batch_size=10,eta=0.1,test_data=test_data)

参考文献
(1)周志华《机器学习》
(2)https://github.com/mnielsen/neural-networks-and-deep-learning
(3)https://zhuanlan.zhihu.com/p/21525237

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python海龟绘图实例教程
Jul 24 Python
python通过exifread模块获得图片exif信息的方法
Mar 16 Python
在Python的web框架中中编写日志列表的教程
Apr 30 Python
Python黑帽编程 3.4 跨越VLAN详解
Sep 28 Python
python八大排序算法速度实例对比
Dec 06 Python
如何安装多版本python python2和python3共存以及pip共存
Sep 18 Python
使用pandas读取文件的实现
Jul 31 Python
python3使用print打印带颜色的字符串代码实例
Aug 22 Python
Python 基于wxpy库实现微信添加好友功能(简洁)
Nov 29 Python
如何利用pygame实现简单的五子棋游戏
Dec 29 Python
Python matplotlib绘制图形实例(包括点,曲线,注释和箭头)
Apr 17 Python
Python 实现定积分与二重定积分的操作
May 26 Python
python单例模式的多种实现方法
Jul 26 #Python
django的ORM操作 增加和查询
Jul 26 #Python
Django在pycharm下修改默认启动端口的方法
Jul 26 #Python
Python解析命令行读取参数之argparse模块
Jul 26 #Python
Django Rest framework三种分页方式详解
Jul 26 #Python
浅析Windows 嵌入python解释器的过程
Jul 26 #Python
python flask几分钟实现web服务的例子
Jul 26 #Python
You might like
php实现简单的上传进度条
2015/11/17 PHP
PHP多进程编程总结(推荐)
2016/07/18 PHP
PHP简单遍历对象示例
2016/09/28 PHP
PHP登录(ajax提交数据和后台校验)实例分享
2016/12/29 PHP
PHP大文件分割上传 PHP分片上传
2017/08/28 PHP
PHP微商城开源代码实例
2019/03/27 PHP
菜鸟javascript基础资料整理3 正则
2010/12/06 Javascript
Javascript 中的 call 和 apply使用介绍
2012/02/22 Javascript
用jquery模仿的a的title属性(兼容ie6/7)
2013/01/21 Javascript
jQuery实现动画效果的简单实例
2014/01/27 Javascript
javascript学习笔记(二)数组和对象部分
2014/09/30 Javascript
js模拟淘宝网的多级选择菜单实现方法
2015/08/18 Javascript
使用JavaScript解决网页图片拉伸问题(推荐)
2016/11/25 Javascript
原生js实现打字动画游戏
2017/02/04 Javascript
jQuery ajax请求struts action实现异步刷新
2017/04/19 jQuery
JScript实现地址选择功能
2017/08/15 Javascript
深入理解Vue nextTick 机制
2018/04/28 Javascript
JavaScript设计模式之构造器模式(生成器模式)定义与用法实例分析
2018/07/26 Javascript
vue-cli点击实现全屏功能
2020/03/07 Javascript
vue路由分文件拆分管理详解
2020/08/13 Javascript
vue项目里面引用svg文件并给svg里面的元素赋值
2020/08/17 Javascript
nuxt静态部署打包相对路径操作
2020/11/06 Javascript
html+vue.js 实现漂亮分页功能可兼容IE
2020/11/07 Javascript
Python简单实现Base64编码和解码的方法
2017/04/29 Python
老生常谈Python之装饰器、迭代器和生成器
2017/07/26 Python
python thrift搭建服务端和客户端测试程序
2018/01/17 Python
Django项目中model的数据处理以及页面交互方法
2018/05/30 Python
Python 爬虫实现增加播客访问量的方法实现
2019/10/31 Python
python print 格式化输出,动态指定长度的实现
2020/04/12 Python
如何用python开发Zeroc Ice应用
2021/01/29 Python
欧舒丹美国官网:L’Occitane美国
2018/02/23 全球购物
黑猩猩商店:The Chimp Store
2020/02/12 全球购物
党员公开承诺书范文
2014/03/25 职场文书
2014年群众路线党员自我评议
2014/09/24 职场文书
python Tkinter的简单入门教程
2021/04/11 Python
8g内存用python读取10文件_面试题-python 如何读取一个大于 10G 的txt文件?
2021/05/28 Python