python实现八大排序算法(1)


Posted in Python onSeptember 14, 2017

排序

排序是计算机内经常进行的一种操作,其目的是将一组”无序”的记录序列调整为”有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能完全在内存中完成,需要访问外存,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。

看图使理解更清晰深刻:

python实现八大排序算法(1)

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的。

常见排序算法

快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法

本文将用Python实现冒泡排序、插入排序、希尔排序、快速排序、直接选择排序、堆排序、归并排序、基数排序这八大排序算法。

1. 冒泡排序(Bubble Sort)

算法原理:

已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。降序排列与升序排列相类似,若a[1]小于a[2]则交换两者的值,否则不变,后面以此类推。 总的来讲,每一轮排序后最大(或最小)的数将移动到数据序列的最后,理论上总共要进行n(n-1)/2次交换。

优点:稳定;
缺点:慢,每次只能移动相邻两个数据。

python代码实现:

#!/usr/bin/env python
#coding:utf-8
'''
file:python-8sort.py
date:9/1/17 9:03 AM
author:lockey
email:lockey@123.com
desc:python实现八大排序算法
'''
lst1 = [2,5435,67,445,34,4,34]
def bubble_sort_basic(lst1):
 lstlen = len(lst1);i = 0
 while i < lstlen:
  for j in range(1,lstlen):
   if lst1[j-1] > lst1[j]:
   #对比相邻两个元素的大小,小的元素上浮
    lst1[j],lst1[j-1] = lst1[j-1],lst1[j]
  i += 1
  print 'sorted{}: {}'.format(i, lst1)
 print '-------------------------------'
 return lst1
bubble_sort_basic(lst1)

冒泡排序算法的改进

对于全员无序或者没有重复元素的序列,上述算法在同一思路上是没有改进余地的,但是如果一个序列中存在重复元素或者部分元素是有序的呢,这种情况下必然会存在不必要的重复排序,那么我们可以在排序过程中加入一标志性变量change,用于标志某一趟排序过程中是否有数据交换,如果进行某一趟排序时并没有进行数据交换,则说明数据已经按要求排列好,可立即结束排序,避免不必要的比较过程,改进后示例代码如下:

lst2 = [2,5435,67,445,34,4,34]
def bubble_sort_improve(lst2):
 lstlen = len(lst2)
 i = 1;times = 0
 while i > 0:
  times += 1
  change = 0
  for j in range(1,lstlen):
   if lst2[j-1] > lst2[j]:
   #使用标记记录本轮排序中是否有数据交换
    change = j
    lst2[j],lst2[j-1] = lst2[j-1],lst2[j]
  print 'sorted{}: {}'.format(times,lst2)
  #将数据交换标记作为循环条件,决定是否继续进行排序
  i = change
 return lst2
bubble_sort_improve(lst2)

两种情况下运行截图如下:

python实现八大排序算法(1)

由上图可以看出,对于部分元素为有序排列的序列,优化后的算法减少了两轮排序。

2.选择排序(Selection Sort)

算法原理:

每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:

①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。

优点:移动数据的次数已知(n-1次);
缺点:比较次数多,不稳定。

python代码实现:

# -*- coding: UTF-8 -*-
'''
Created on 2017年8月31日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def selection_sort(lst):
 lstlen = len(lst)
 for i in range(0,lstlen):
  min = i
  for j in range(i+1,lstlen):
  #从 i+1开始循环遍历寻找最小的索引
   if lst[min] > lst[j]:
    min = j
  lst[min],lst[i] = lst[i],lst[min]
  #一层遍历结束后将最小值赋给外层索引i所指的位置,将i的值赋给最小值索引  
  print('The {} sorted: {}'.format(i+1,lst))
 return lst
sorted = selection_sort(lst)
print('The sorted result is: {}'.format(sorted))

运行结果截图:

python实现八大排序算法(1)

3. 插入排序

算法原理:

已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)
优点:稳定,快;
缺点:比较次数不一定,比较次数越多,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。

算法复杂度

如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数加上 (n-1)次。平均来说插入排序算法的时间复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。

python代码实现:

# -*- coding: UTF-8 -*-
'''
Created on 2017年8月31日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def insert_sort(lst):
 count = len(lst)
 for i in range(1, count):
  key = lst[i]
  j = i - 1
  while j >= 0:
   if lst[j] > key:
    lst[j + 1] = lst[j]
    lst[j] = key
   j -= 1
  print('The {} sorted: {}'.format(i,lst))
 return lst
sorted = insert_sort(lst)
print('The sorted result is: {}'.format(sorted))

运行结果截图:

python实现八大排序算法(1)

由排序过程可知,每次往已经排好序的序列中插入一个元素,然后排序,下次再插入一个元素排序。。。直到所有元素都插入,排序结束

4. 希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。

算法原理

算法核心为分组(按步长)、组内插入排序

已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入排序的效果很好。首先取一增量d(d<n),将a[1]、a[1+d]、a[1+2d]……列为第一组,a[2]、a[2+d]、a[2+2d]……列为第二组……,a[d]、a[2d]、a[3d]……列为最后一组以次类推,在各组内用插入排序,然后取d'<d,重复上述操作,直到d=1。

python代码实现:

#!/usr/bin/env python
#coding:utf-8
'''
file:python-8sort.py
date:9/1/17 9:03 AM
author:lockey
email:lockey@123.com
desc:python实现八大排序算法
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def shell_sort(lists):
 print 'orginal list is {}'.format(lst)
 count = len(lists)
 step = 2
 times = 0
 group = int(count/step)
 while group > 0:
  for i in range(0, group):
   times += 1
   j = i + group
   while j < count:
    k = j - group
    key = lists[j]
    while k >= 0:
     if lists[k] > key:
      lists[k + group] = lists[k]
      lists[k] = key
     k -= group
    j += group
    print 'The {} sorted: {}'.format(times,lists)
  group = int(group/step)
 print 'The final result is: {}'.format(lists)
 return lists
shell_sort(lst)

运行测试结果截图:
python实现八大排序算法(1)

过程分析:

第一步:

1-5:将序列分成了5组(group = int(count/step)),如下图,一列为一组:

python实现八大排序算法(1)

然后各组内进行插入排序,经过5(5组*1次)次组内插入排序得到了序列:

The 1-5 sorted:[34, 65, 8, 6, 4, 65, 568, 9, 23, 9]

python实现八大排序算法(1)

第二步:

6666-7777:将序列分成了2组(group = int(group/step)),如下图,一列为一组:

python实现八大排序算法(1) 

然后各组内进行插入排序,经过8(2组*4次)次组内插入排序得到了序列:

The 6-7 sorted: [4, 6, 8, 9, 23, 9, 34, 65, 568, 65]

python实现八大排序算法(1)

第三步:

888888888:对上一个排序结果得到的完整序列进行插入排序:

[4, 6, 8, 9, 23, 9, 34, 65, 568, 65]

经过9(1组*10 -1)次插入排序后:

The final result is: [4, 6, 8, 9, 9, 23, 34, 65, 65, 568]

希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的增量因子序列的方法。增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。希尔排序方法是一个不稳定的排序方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
基于python的Tkinter实现一个简易计算器
Dec 31 Python
Python文件的读写和异常代码示例
Oct 31 Python
Python+matplotlib实现计算两个信号的交叉谱密度实例
Jan 08 Python
Python中的random.uniform()函数教程与实例解析
Mar 02 Python
python从入门到精通 windows安装python图文教程
May 18 Python
python add_argument()用法解析
Jan 29 Python
Python连接Oracle之环境配置、实例代码及报错解决方法详解
Feb 11 Python
Python socket连接中的粘包、精确传输问题实例分析
Mar 24 Python
Python的in,is和id函数代码实例
Apr 18 Python
完美解决pycharm 不显示代码提示问题
Jun 02 Python
Python xpath表达式如何实现数据处理
Jun 13 Python
2021年值得向Python开发者推荐的VS Code扩展插件
Jan 25 Python
python实现简单聊天应用 python群聊和点对点均实现
Sep 14 #Python
Python实现购物系统(示例讲解)
Sep 13 #Python
python模块之sys模块和序列化模块(实例讲解)
Sep 13 #Python
python模块之time模块(实例讲解)
Sep 13 #Python
python difflib模块示例讲解
Sep 13 #Python
Python网络编程 Python套接字编程
Sep 13 #Python
python和ruby,我选谁?
Sep 13 #Python
You might like
php自动获取关键字的方法
2015/01/06 PHP
CI框架数据库查询之join用法分析
2016/05/18 PHP
PHP使用DOM和simplexml读取xml文档的方法示例
2017/02/08 PHP
Django 标签筛选的实现代码(一对多、多对多)
2018/09/05 PHP
phpinfo无法显示的原因及解决办法
2019/02/15 PHP
CSS中一些@规则的用法小结
2021/03/09 HTML / CSS
jQuery表单验证插件formValidator(改进版)
2012/02/03 Javascript
SOSO地图API使用(一)在地图上画圆实现思路与代码
2013/01/15 Javascript
JS根据生日算年龄的方法
2015/05/05 Javascript
JSON相关知识汇总
2015/07/03 Javascript
jquery+CSS实现的水平布局多级网页菜单效果
2015/08/24 Javascript
jQuery实现侧浮窗与中浮窗切换效果的方法
2016/09/05 Javascript
微信网页授权并获取用户信息的方法
2018/07/30 Javascript
vue监听input标签的value值方法
2018/08/27 Javascript
关于自定义Egg.js的请求级别日志详解
2018/12/12 Javascript
react native 原生模块桥接的简单说明小结
2019/02/26 Javascript
vue-socket.io跨域问题有效解决方法
2020/02/11 Javascript
Python中列表的一些基本操作知识汇总
2015/05/20 Python
python 生成器协程运算实例
2017/09/04 Python
Python向MySQL批量插数据的实例讲解
2018/03/31 Python
Django Web开发中django-debug-toolbar的配置以及使用
2018/05/06 Python
Python 爬虫之Beautiful Soup模块使用指南
2018/07/05 Python
python读取txt文件中特定位置字符的方法
2018/12/24 Python
python Event事件、进程池与线程池、协程解析
2019/10/25 Python
python ubplot使用方法解析
2020/01/10 Python
python根据完整路径获得盘名/路径名/文件名/文件扩展名的方法
2020/04/22 Python
python ETL工具 pyetl
2020/06/07 Python
Python3如何实现Win10桌面自动切换
2020/08/11 Python
澳大利亚床上用品、浴巾和家居用品购物网站:Bambury
2020/04/16 全球购物
编程实现当输入某产品代码则打印出该产品记录的功能
2014/05/03 面试题
如何现实servlet的单线程模式
2014/08/05 面试题
函授毕业自我鉴定
2013/12/19 职场文书
服装机修工岗位职责
2013/12/26 职场文书
商务会议邀请函
2014/01/09 职场文书
2014年技术部工作总结
2014/12/12 职场文书
Apache Pulsar结合Hudi构建Lakehouse方案分析
2022/03/31 Servers