Python实现手势识别


Posted in Python onOctober 21, 2020

这是借鉴了github上的一个源程序,参考源:https://github.com/lzane/Fingers-Detection-using-OpenCV-and-Python

自己在这个基础上做了一点修改补充后,可以实现手指指尖的检测,并且可以在windows系统下通过判断手指数目,来模拟键盘操作。下面直接上源程序,并做了详细注释,方便理解。

环境:python3.6+opencv3.4.0

代码如下:

import cv2
import numpy as np
import copy
import math
import win32api
import win32con

# 参数
cap_region_x_begin = 0.5 # 起点/总宽度
cap_region_y_end = 0.8
threshold = 60 # 二值化阈值
blurValue = 41 # 高斯模糊参数
bgSubThreshold = 50
learningRate = 0

# 变量
isBgCaptured = 0 # 布尔类型, 背景是否被捕获
triggerSwitch = False # 如果正确,键盘模拟器将工作


def printThreshold(thr):
  print("! Changed threshold to " + str(thr))


def removeBG(frame): #移除背景
  fgmask = bgModel.apply(frame, learningRate=learningRate) #计算前景掩膜
  kernel = np.ones((3, 3), np.uint8)
  fgmask = cv2.erode(fgmask, kernel, iterations=1) #使用特定的结构元素来侵蚀图像。
  res = cv2.bitwise_and(frame, frame, mask=fgmask) #使用掩膜移除静态背景
  return res

# 相机/摄像头
camera = cv2.VideoCapture(0)  #打开电脑自带摄像头,如果参数是1会打开外接摄像头
camera.set(10, 200)  #设置视频属性
cv2.namedWindow('trackbar') #设置窗口名字
cv2.resizeWindow("trackbar", 640, 200) #重新设置窗口尺寸
cv2.createTrackbar('threshold', 'trackbar', threshold, 100, printThreshold)
#createTrackbar是Opencv中的API,其可在显示图像的窗口中快速创建一个滑动控件,用于手动调节阈值,具有非常直观的效果。

while camera.isOpened():
  ret, frame = camera.read()
  threshold = cv2.getTrackbarPos('threshold', 'trackbar') #返回滑动条上的位置的值(即实时更新阈值)
  # frame = cv2.cvtColor(frame,cv2.COLOR_RGB2YCrCb)
  frame = cv2.bilateralFilter(frame, 5, 50, 100) # 双边滤波
  frame = cv2.flip(frame, 1) # 翻转 0:沿X轴翻转(垂直翻转)  大于0:沿Y轴翻转(水平翻转)  小于0:先沿X轴翻转,再沿Y轴翻转,等价于旋转180°
  cv2.rectangle(frame, (int(cap_region_x_begin * frame.shape[1]), 0),(frame.shape[1], int(cap_region_y_end * frame.shape[0])), (0, 0, 255), 2)
  #画矩形框 frame.shape[0]表示frame的高度  frame.shape[1]表示frame的宽度  注:opencv的像素是BGR顺序
  cv2.imshow('original', frame)  #经过双边滤波后的初始化窗口

  #主要操作
  if isBgCaptured == 1: # isBgCaptured == 1 表示已经捕获背景
    img = removeBG(frame) #移除背景
    img = img[0:int(cap_region_y_end * frame.shape[0]),int(cap_region_x_begin * frame.shape[1]):frame.shape[1]] # 剪切右上角矩形框区域
    cv2.imshow('mask', img)

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将移除背景后的图像转换为灰度图
    blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0) #加高斯模糊
    cv2.imshow('blur', blur)
    ret, thresh = cv2.threshold(blur, threshold, 255, cv2.THRESH_BINARY) #二值化处理
    cv2.imshow('binary', thresh)

    # get the coutours
    thresh1 = copy.deepcopy(thresh)
    _, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #寻找轮廓  注:这里的'_'用作变量名称,_表示一个变量被指定了名称,但不打算使用。
    length = len(contours)
    maxArea = -1
    if length > 0:
      for i in range(length): # 找到最大的轮廓(根据面积)
        temp = contours[i]
        area = cv2.contourArea(temp) #计算轮廓区域面积
        if area > maxArea:
          maxArea = area
          ci = i

      res = contours[ci] #得出最大的轮廓区域
      hull = cv2.convexHull(res) #得出点集(组成轮廓的点)的凸包
      drawing = np.zeros(img.shape, np.uint8)
      cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2)  #画出最大区域轮廓
      cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3) #画出凸包轮廓

      moments = cv2.moments(res) # 求最大区域轮廓的各阶矩
      center = (int(moments['m10'] / moments['m00']), int(moments['m01'] / moments['m00']))
      cv2.circle(drawing, center, 8, (0,0,255), -1)  #画出重心

      fingerRes = []  #寻找指尖
      max = 0; count = 0; notice = 0; cnt = 0
      for i in range(len(res)):
        temp = res[i]
        dist = (temp[0][0] -center[0])*(temp[0][0] -center[0]) + (temp[0][1] -center[1])*(temp[0][1] -center[1]) #计算重心到轮廓边缘的距离
        if dist > max:
          max = dist
          notice = i
        if dist != max:
          count = count + 1
          if count > 40:
            count = 0
            max = 0
            flag = False  #布尔值
            if center[1] < res[notice][0][1]:  #低于手心的点不算
              continue
            for j in range(len(fingerRes)): #离得太近的不算
              if abs(res[notice][0][0]-fingerRes[j][0]) < 20 :
                flag = True
                break
            if flag :
              continue
            fingerRes.append(res[notice][0])
            cv2.circle(drawing, tuple(res[notice][0]), 8 , (255, 0, 0), -1) #画出指尖
            cv2.line(drawing, center, tuple(res[notice][0]), (255, 0, 0), 2)
            cnt = cnt + 1

      cv2.imshow('output', drawing)
      print(cnt)
      if triggerSwitch is True:
        if cnt >= 3:
          print(cnt)
          # app('System Events').keystroke(' ') # simulate pressing blank space
          win32api.keybd_event(32, 0, 0, 0) # 空格键位码是32
          win32api.keybd_event(32, 0, win32con.KEYEVENTF_KEYUP, 0) # 释放空格键

  # 输入的键盘值
  k = cv2.waitKey(10)
  if k == 27: # 按下ESC退出
    break
  elif k == ord('b'): # 按下'b'会捕获背景
    bgModel = cv2.createBackgroundSubtractorMOG2(0, bgSubThreshold)
    #Opencv集成了BackgroundSubtractorMOG2用于动态目标检测,用到的是基于自适应混合高斯背景建模的背景减除法。
    isBgCaptured = 1
    print('!!!Background Captured!!!')
  elif k == ord('r'): # 按下'r'会重置背景
    bgModel = None
    triggerSwitch = False
    isBgCaptured = 0
    print('!!!Reset BackGround!!!')
  elif k == ord('n'):
    triggerSwitch = True
    print('!!!Trigger On!!!')

运行程序操作:运行程序后,按下键盘的 b 键就可以捕获背景了

运行结果:

Python实现手势识别

注:模拟点击空格键部分并未展示出来,有兴趣的可以尝试一下(按下n键就可以模拟键盘操作了)

补:该程序受光线影响其实较大,只有在单调背景小效果很好。

-------------------补充----------------------

后期再运行该程序的时候发现有一个错误,如下:

Python实现手势识别

原因:opencv版本的原因,在opencv 4.0.0版本后,findContours的返回值只有contours, hierarchy两个参数,不再有三个参数了!

解决办法:

方法一:

更换opencv的版本 

方法二:

将代码 _,contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  改为 contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  即可!

以上就是Python实现手势识别的详细内容,更多关于Python 手势识别的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python入门篇之字符串
Oct 17 Python
Python单链表简单实现代码
Apr 27 Python
Python简单实现socket信息发送与监听功能示例
Jan 03 Python
python获取网页中所有图片并筛选指定分辨率的方法
Mar 31 Python
Python将一个CSV文件里的数据追加到另一个CSV文件的方法
Jul 04 Python
python分块读取大数据,避免内存不足的方法
Dec 10 Python
Python GUI编程 文本弹窗的实例
Jun 11 Python
Python 获取指定文件夹下的目录和文件的实现
Aug 30 Python
解决PyCharm IDE环境下,执行unittest不生成测试报告的问题
Sep 03 Python
python3列表删除大量重复元素remove()方法的问题详解
Jan 04 Python
python实现socket简单通信的示例代码
Apr 13 Python
Python四款GUI图形界面库介绍
Jun 05 Python
利用Python优雅的登录校园网
Oct 21 #Python
python 使用三引号时容易犯的小错误
Oct 21 #Python
利用Python实现字幕挂载(把字幕文件与视频合并)思路详解
Oct 21 #Python
基于python爬取链家二手房信息代码示例
Oct 21 #Python
如何让PyQt5中QWebEngineView与JavaScript交互
Oct 21 #Python
Python为何不支持switch语句原理详解
Oct 21 #Python
基于Python爬取素材网站音频文件
Oct 21 #Python
You might like
php自动给文章加关键词链接的函数代码
2012/11/29 PHP
使用ThinkPHP+Uploadify实现图片上传功能
2014/06/26 PHP
找到一点可怜的关于dojo资料,谢谢作者!
2006/12/06 Javascript
js 变量类型转换常用函数与代码[比较全]
2009/12/01 Javascript
Jquery数独游戏解析(一)-页面布局
2010/11/05 Javascript
jQuery1.5.1 animate方法源码阅读
2011/04/05 Javascript
js 自动播放的实例代码
2013/11/19 Javascript
JavaScript简单表格编辑功能实现方法
2015/04/16 Javascript
CSS3实现动态背景登录框的代码
2015/07/28 Javascript
基于jQuery和CSS3制作响应式水平时间轴附源码下载
2015/12/20 Javascript
JavaScript代码因逗号不规范导致IE不兼容的问题
2016/02/25 Javascript
JavaScript定时器制作弹窗小广告
2017/02/05 Javascript
JavaScript正则获取地址栏中参数的方法
2017/03/02 Javascript
js实现移动端编辑添加地址【模仿京东】
2017/04/28 Javascript
关于TypeScript中import JSON的正确姿势详解
2017/07/25 Javascript
jQuery中将json数据显示到页面表格的方法
2018/05/27 jQuery
JavaScript引用类型Date常见用法实例分析
2018/08/08 Javascript
Vue全局loading及错误提示的思路与实现
2019/08/09 Javascript
jQuery实现鼠标放置名字上显示详细内容气泡提示框效果的方法分析
2020/04/04 jQuery
Java 生成随机字符的示例代码
2021/01/13 Javascript
Python单例模式实例分析
2015/01/14 Python
Python 专题四 文件基础知识
2017/03/20 Python
Python中使用支持向量机SVM实践
2017/12/27 Python
python turtle库画一个方格和圆实例
2019/06/27 Python
css3设置box-pack和box-align让div里面的元素垂直居中
2014/09/01 HTML / CSS
24个canvas基础知识小结
2014/12/17 HTML / CSS
泰坦健身器材:Titan Fitness
2018/02/13 全球购物
澳大利亚在线划船、露营和钓鱼商店:BCF Australia
2020/03/22 全球购物
俄罗斯运动、健康和美容产品在线商店:Lactomin.ru
2020/07/23 全球购物
Diesel美国网上商店:意大利牛仔时装品牌
2020/12/10 全球购物
电大毕业自我鉴定
2014/02/03 职场文书
运动会通讯稿200字
2014/02/16 职场文书
设备技术员岗位职责
2015/04/11 职场文书
教师节校长致辞
2015/07/31 职场文书
一文彻底理解js原生语法prototype,__proto__和constructor
2021/10/24 Javascript
MySQL数据库配置信息查看与修改方法详解
2022/06/25 MySQL