PyTorch中Tensor的数据统计示例


Posted in Python onFebruary 17, 2020

张量范数:torch.norm(input, p=2) → float

返回输入张量 input 的 p 范数

举个例子:

>>> import torch
>>> a = torch.full([8], 1)
>>> b = a.view(2, 4)
>>> c = a.view(2, 2, 2)
>>> a.norm(1), b.norm(1), c.norm(1)	# 求 1- 范数
(tensor(8.), tensor(8.), tensor(8.))
>>> a.norm(2), b.norm(2), c.norm(2)	# 求 2- 范数
(tensor(2.8284), tensor(2.8284), tensor(2.8284))
>>> a.norm(3), b.norm(3), c.norm(3)# 求 ∞- 范数
(tensor(2.), tensor(2.), tensor(2.))
>>> b
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b.norm(1, 1) # 在 1 维度上求 1- 范数
tensor([4., 4.])
>>> b.norm(2, 1) # 在 1 维度上求 2- 范数
b.norm(1, 2)
>>> c
tensor([[[1., 1.],
     [1., 1.]],

    [[1., 1.],
     [1., 1.]]])
>>> c.norm(1, 0) # 在 0 维度上求 1- 范数
tensor([[2., 2.],
    [2., 2.]])
>>> c.norm(2, 0) # 在 0 维度上求 2- 范数
tensor([[1.4142, 1.4142],
    [1.4142, 1.4142]])

只有一个参数时,表示对整个张量求范数,参数表示范数的幂指数值。

有两个参数时,表示在张量某一维度对尺寸中每一部分求范数,第一个参数是范数的幂指数值,第二个参数是选择的维度。

张量统计

最基础的统计方法,比如张量中的最小值、最大值、均值、累加、累积。

举个例子:

>>> a = torch.arange(8).view(2, 4).float()
>>> a
tensor([[0., 1., 2., 3.],
    [4., 5., 6., 7.]])
>>> a.min(), a.max(), a.mean(), a.sum(), a.prod() # 分别求最小值、最大值、均值、累加、累积
(tensor(0.), tensor(7.), tensor(3.5000), tensor(28.), tensor(0.))
>>> a.argmin(), a.argmax() # 分别是把张量打平后最小值、最大值的索引
(tensor(0), tensor(7))
>>> a.argmin(1), a.argmax(1) # 不打平求 1 维度中每一部分最小值、最大值的索引
(tensor([0, 0]), tensor([3, 3]))

dim和keepdim

>>> a = torch.randn(5, 10)
>>> a
tensor([[-0.6346, -0.9074, 0.1525, 0.1901, -0.5391, -0.2437, 1.0150, -0.0427,
     -1.5336, 0.8542],
    [-0.1879, 1.9947, -0.3524, -1.2559, -0.8129, -0.3018, 0.5654, 0.8428,
     -0.3517, -0.7787],
    [ 0.0686, 0.6166, 0.2632, -0.0947, -0.5592, -1.4041, 1.5565, 1.5616,
     -1.3076, -0.1137],
    [ 0.5205, -1.5716, -1.1277, 0.8096, -0.2123, -0.0974, 0.7698, 1.1373,
     0.5165, 0.5256],
    [-0.4162, 0.3170, 0.2368, 1.1695, -0.1960, -0.3285, 0.2420, 1.6468,
     0.2646, 0.4573]])
>>> a.max(dim=1)
(tensor([1.0150, 1.9947, 1.5616, 1.1373, 1.6468]), tensor([6, 1, 7, 7, 7]))
>>> a.argmax(dim=1)
tensor([6, 1, 7, 7, 7])

max 添加 dim 后不仅显示了 1 维度中每一部分的最大值,还显示了其索引

>>> a.max(dim=1, keepdim=True)
(tensor([[1.0150],
    [1.9947],
    [1.5616],
    [1.1373],
    [1.6468]]), tensor([[6],
    [1],
    [7],
    [7],
    [7]]))
>>> a.argmax(dim=1, keepdim=True)
tensor([[6],
    [1],
    [7],
    [7],
    [7]])

保持维度一致。添加 keepdim 后,得出的结果维度不改变,原来是二维的数据,得出的结果还是二维。不添加得出的结果就是一维的。

比较操作

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)

沿给定 dim 维度返回输入张量 input 中 k 个最大值。 如果不指定 dim,则默认为 input 的最后一维。 如果为 largest 为 False ,则返回最小的 k 个值。

返回一个元组 (values,indices),其中 indices 是原始输入张量 input 中测元素下标。 如果设定布尔值 sorted 为_True_,将会确保返回的 k 个值被排序。

torch.kthvalue(input, k, dim=None, out=None) -> (Tensor, LongTensor) 取输入张量 input 指定维上第 k 个最小值。如果不指定 dim,则默认为 input 的最后一维。

返回一个元组 (values,indices),其中indices是原始输入张量input中沿dim维的第 k 个最小值下标。

举个例子:

>>> b = torch.randn(5, 10)
>>> b
tensor([[ 0.1863, 0.0160, -1.0657, -1.8984, 2.3274, 0.6534, 1.8126, 1.8666,
     0.4830, -0.7800],
    [-0.9359, -1.0655, 0.8321, 1.6265, 0.6812, -0.2870, 0.6987, 0.6067,
     -0.1318, 0.7819],
    [-3.1129, 0.9571, -0.1319, -1.0016, 0.7267, 0.1060, -0.2926, 0.3492,
     1.0026, 0.2924],
    [-0.7101, -0.8327, 0.5463, 0.3805, -0.8720, -1.6723, 0.0365, 1.5540,
     0.1940, 1.4294],
    [ 0.4174, -0.9414, -0.0351, -1.6142, -0.7802, -2.3916, -2.4822, 0.7233,
     -0.7037, 0.2725]])
>>> b.topk(3, dim=1)
(tensor([[2.3274, 1.8666, 1.8126],
    [1.6265, 0.8321, 0.7819],
    [1.0026, 0.9571, 0.7267],
    [1.5540, 1.4294, 0.5463],
    [0.7233, 0.4174, 0.2725]]), tensor([[4, 7, 6],
    [3, 2, 9],
    [8, 1, 4],
    [7, 9, 2],
    [7, 0, 9]]))
>>> b.topk(3, dim=1, largest=False)
(tensor([[-1.8984, -1.0657, -0.7800],
    [-1.0655, -0.9359, -0.2870],
    [-3.1129, -1.0016, -0.2926],
    [-1.6723, -0.8720, -0.8327],
    [-2.4822, -2.3916, -1.6142]]), tensor([[3, 2, 9],
    [1, 0, 5],
    [0, 3, 6],
    [5, 4, 1],
    [6, 5, 3]]))
>>> a.kthvalue(8, dim=1)
(tensor([0.1034, 0.8940, 0.6155, 0.4210, 0.1955]), tensor([1, 2, 6, 4, 7]))

topk 添加 largest=False 就是返回最小,不添加就是返回最大。

kthvalue 返回以从大到小排列的指定位置的数。上面代码中即为返回第 8 小的数。

torch.eq(input, other, out=None) → Tensor

比较元素相等性。第二个参数可为一个数或与第一个参数同类型形状的张量。

torch.equal(tensor1, tensor2) → bool

如果两个张量有相同的形状和元素值,则返回 True ,否则 False。

举个例子:

>>> a = torch.ones(2, 3)
>>> b = torch.randn(2, 3)
>>> torch.eq(a, b)
tensor([[0, 0, 0],
    [0, 0, 0]], dtype=torch.uint8)
>>> torch.eq(a, a)
tensor([[1, 1, 1],
    [1, 1, 1]], dtype=torch.uint8)
>>> torch.equal(a, a)
True

eq 比较张量中的每个数据,equal 比较整个张量

以上这篇PyTorch中Tensor的数据统计示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中使用smtplib和email模块发送邮件实例
Apr 22 Python
详解Python3操作Mongodb简明易懂教程
May 25 Python
Python中列表与元组的乘法操作示例
Feb 10 Python
python实现m3u8格式转换为mp4视频格式
Feb 28 Python
PyQt5实现拖放功能
Apr 25 Python
Django web框架使用url path name详解
Apr 29 Python
详解PyCharm+QTDesigner+PyUIC使用教程
Jun 13 Python
实例详解Python装饰器与闭包
Jul 29 Python
用Python将Excel数据导入到SQL Server的例子
Aug 24 Python
Django REST Framework之频率限制的使用
Sep 29 Python
关于Python3 lambda函数的深入浅出
Nov 27 Python
python GUI库图形界面开发之PyQt5信号与槽基本操作
Feb 25 Python
pytorch实现Tensor变量之间的转换
Feb 17 #Python
Macbook安装Python最新版本、GUI开发环境、图像处理、视频处理环境详解
Feb 17 #Python
PyCharm无法识别PyQt5的2种解决方法,ModuleNotFoundError: No module named 'pyqt5'
Feb 17 #Python
python识别验证码图片实例详解
Feb 17 #Python
Python pyautogui模块实现鼠标键盘自动化方法详解
Feb 17 #Python
Matplotlib使用字符串代替变量绘制散点图的方法
Feb 17 #Python
关于tf.TFRecordReader()函数的用法解析
Feb 17 #Python
You might like
PHP+MYSQL会员系统的登陆即权限判断实现代码
2011/09/23 PHP
PHP imagegrabscreen和imagegrabwindow(截取网站缩略图)的实例代码
2013/11/07 PHP
三种php连接access数据库方法
2013/11/11 PHP
php+mysql大量用户登录解决方案分析
2014/12/29 PHP
php结合redis高并发下发帖、发微博的实现方法
2016/12/15 PHP
Smarty3配置及入门语法
2017/02/22 PHP
总结PHP代码规范、流程规范、git规范
2018/06/18 PHP
PHP中单例模式的使用场景与使用方法讲解
2019/03/18 PHP
PHP封装类似thinkphp连贯操作数据库Db类与简单应用示例
2019/05/08 PHP
兼容IE与firefox火狐的回车事件(js与jquery)
2010/10/20 Javascript
MooTools 页面滚动浮动层智能定位实现代码
2011/08/23 Javascript
js实现连个数字相加而不是拼接的方法
2014/02/23 Javascript
javascript中声明函数的方法及调用函数的返回值
2014/07/22 Javascript
JS使用for循环遍历Table的所有单元格内容
2014/08/21 Javascript
举例讲解AngularJS中的模块
2015/06/17 Javascript
JS简单去除数组中重复项的方法
2016/09/13 Javascript
js实现百度搜索提示框
2017/02/05 Javascript
jQuery实现合并表格单元格中相同行操作示例
2019/01/28 jQuery
[02:25]DOTA2英雄基础教程 虚空假面
2014/01/02 DOTA
Python实现多级目录压缩与解压文件的方法
2018/09/01 Python
Python时间序列处理之ARIMA模型的使用讲解
2019/04/02 Python
Python @property使用方法解析
2019/09/17 Python
基于Python计算圆周率pi代码实例
2020/03/25 Python
keras:model.compile损失函数的用法
2020/07/01 Python
Python OpenCV去除字母后面的杂线操作
2020/07/05 Python
python爬虫构建代理ip池抓取数据库的示例代码
2020/09/22 Python
浅谈Selenium+Webdriver 常用的元素定位方式
2021/01/13 Python
解决tensorflow模型压缩的问题_踩坑无数,总算搞定
2021/03/02 Python
美国最古老的精致书写工具制造商:A.T. Cross(高仕)
2018/01/30 全球购物
西班牙宠物用品和食品网上商店:Tiendanimal
2019/06/06 全球购物
家乐福台湾线上购物网:Carrefour台湾
2020/09/15 全球购物
shell的种类有哪些
2015/04/15 面试题
2015年大学元旦晚会活动策划书
2014/12/09 职场文书
个人工作年终总结
2015/03/09 职场文书
MySQL5.7并行复制原理及实现
2021/06/03 MySQL
公历12个月名称的由来
2022/04/12 杂记