PyTorch中Tensor的数据统计示例


Posted in Python onFebruary 17, 2020

张量范数:torch.norm(input, p=2) → float

返回输入张量 input 的 p 范数

举个例子:

>>> import torch
>>> a = torch.full([8], 1)
>>> b = a.view(2, 4)
>>> c = a.view(2, 2, 2)
>>> a.norm(1), b.norm(1), c.norm(1)	# 求 1- 范数
(tensor(8.), tensor(8.), tensor(8.))
>>> a.norm(2), b.norm(2), c.norm(2)	# 求 2- 范数
(tensor(2.8284), tensor(2.8284), tensor(2.8284))
>>> a.norm(3), b.norm(3), c.norm(3)# 求 ∞- 范数
(tensor(2.), tensor(2.), tensor(2.))
>>> b
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b.norm(1, 1) # 在 1 维度上求 1- 范数
tensor([4., 4.])
>>> b.norm(2, 1) # 在 1 维度上求 2- 范数
b.norm(1, 2)
>>> c
tensor([[[1., 1.],
     [1., 1.]],

    [[1., 1.],
     [1., 1.]]])
>>> c.norm(1, 0) # 在 0 维度上求 1- 范数
tensor([[2., 2.],
    [2., 2.]])
>>> c.norm(2, 0) # 在 0 维度上求 2- 范数
tensor([[1.4142, 1.4142],
    [1.4142, 1.4142]])

只有一个参数时,表示对整个张量求范数,参数表示范数的幂指数值。

有两个参数时,表示在张量某一维度对尺寸中每一部分求范数,第一个参数是范数的幂指数值,第二个参数是选择的维度。

张量统计

最基础的统计方法,比如张量中的最小值、最大值、均值、累加、累积。

举个例子:

>>> a = torch.arange(8).view(2, 4).float()
>>> a
tensor([[0., 1., 2., 3.],
    [4., 5., 6., 7.]])
>>> a.min(), a.max(), a.mean(), a.sum(), a.prod() # 分别求最小值、最大值、均值、累加、累积
(tensor(0.), tensor(7.), tensor(3.5000), tensor(28.), tensor(0.))
>>> a.argmin(), a.argmax() # 分别是把张量打平后最小值、最大值的索引
(tensor(0), tensor(7))
>>> a.argmin(1), a.argmax(1) # 不打平求 1 维度中每一部分最小值、最大值的索引
(tensor([0, 0]), tensor([3, 3]))

dim和keepdim

>>> a = torch.randn(5, 10)
>>> a
tensor([[-0.6346, -0.9074, 0.1525, 0.1901, -0.5391, -0.2437, 1.0150, -0.0427,
     -1.5336, 0.8542],
    [-0.1879, 1.9947, -0.3524, -1.2559, -0.8129, -0.3018, 0.5654, 0.8428,
     -0.3517, -0.7787],
    [ 0.0686, 0.6166, 0.2632, -0.0947, -0.5592, -1.4041, 1.5565, 1.5616,
     -1.3076, -0.1137],
    [ 0.5205, -1.5716, -1.1277, 0.8096, -0.2123, -0.0974, 0.7698, 1.1373,
     0.5165, 0.5256],
    [-0.4162, 0.3170, 0.2368, 1.1695, -0.1960, -0.3285, 0.2420, 1.6468,
     0.2646, 0.4573]])
>>> a.max(dim=1)
(tensor([1.0150, 1.9947, 1.5616, 1.1373, 1.6468]), tensor([6, 1, 7, 7, 7]))
>>> a.argmax(dim=1)
tensor([6, 1, 7, 7, 7])

max 添加 dim 后不仅显示了 1 维度中每一部分的最大值,还显示了其索引

>>> a.max(dim=1, keepdim=True)
(tensor([[1.0150],
    [1.9947],
    [1.5616],
    [1.1373],
    [1.6468]]), tensor([[6],
    [1],
    [7],
    [7],
    [7]]))
>>> a.argmax(dim=1, keepdim=True)
tensor([[6],
    [1],
    [7],
    [7],
    [7]])

保持维度一致。添加 keepdim 后,得出的结果维度不改变,原来是二维的数据,得出的结果还是二维。不添加得出的结果就是一维的。

比较操作

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)

沿给定 dim 维度返回输入张量 input 中 k 个最大值。 如果不指定 dim,则默认为 input 的最后一维。 如果为 largest 为 False ,则返回最小的 k 个值。

返回一个元组 (values,indices),其中 indices 是原始输入张量 input 中测元素下标。 如果设定布尔值 sorted 为_True_,将会确保返回的 k 个值被排序。

torch.kthvalue(input, k, dim=None, out=None) -> (Tensor, LongTensor) 取输入张量 input 指定维上第 k 个最小值。如果不指定 dim,则默认为 input 的最后一维。

返回一个元组 (values,indices),其中indices是原始输入张量input中沿dim维的第 k 个最小值下标。

举个例子:

>>> b = torch.randn(5, 10)
>>> b
tensor([[ 0.1863, 0.0160, -1.0657, -1.8984, 2.3274, 0.6534, 1.8126, 1.8666,
     0.4830, -0.7800],
    [-0.9359, -1.0655, 0.8321, 1.6265, 0.6812, -0.2870, 0.6987, 0.6067,
     -0.1318, 0.7819],
    [-3.1129, 0.9571, -0.1319, -1.0016, 0.7267, 0.1060, -0.2926, 0.3492,
     1.0026, 0.2924],
    [-0.7101, -0.8327, 0.5463, 0.3805, -0.8720, -1.6723, 0.0365, 1.5540,
     0.1940, 1.4294],
    [ 0.4174, -0.9414, -0.0351, -1.6142, -0.7802, -2.3916, -2.4822, 0.7233,
     -0.7037, 0.2725]])
>>> b.topk(3, dim=1)
(tensor([[2.3274, 1.8666, 1.8126],
    [1.6265, 0.8321, 0.7819],
    [1.0026, 0.9571, 0.7267],
    [1.5540, 1.4294, 0.5463],
    [0.7233, 0.4174, 0.2725]]), tensor([[4, 7, 6],
    [3, 2, 9],
    [8, 1, 4],
    [7, 9, 2],
    [7, 0, 9]]))
>>> b.topk(3, dim=1, largest=False)
(tensor([[-1.8984, -1.0657, -0.7800],
    [-1.0655, -0.9359, -0.2870],
    [-3.1129, -1.0016, -0.2926],
    [-1.6723, -0.8720, -0.8327],
    [-2.4822, -2.3916, -1.6142]]), tensor([[3, 2, 9],
    [1, 0, 5],
    [0, 3, 6],
    [5, 4, 1],
    [6, 5, 3]]))
>>> a.kthvalue(8, dim=1)
(tensor([0.1034, 0.8940, 0.6155, 0.4210, 0.1955]), tensor([1, 2, 6, 4, 7]))

topk 添加 largest=False 就是返回最小,不添加就是返回最大。

kthvalue 返回以从大到小排列的指定位置的数。上面代码中即为返回第 8 小的数。

torch.eq(input, other, out=None) → Tensor

比较元素相等性。第二个参数可为一个数或与第一个参数同类型形状的张量。

torch.equal(tensor1, tensor2) → bool

如果两个张量有相同的形状和元素值,则返回 True ,否则 False。

举个例子:

>>> a = torch.ones(2, 3)
>>> b = torch.randn(2, 3)
>>> torch.eq(a, b)
tensor([[0, 0, 0],
    [0, 0, 0]], dtype=torch.uint8)
>>> torch.eq(a, a)
tensor([[1, 1, 1],
    [1, 1, 1]], dtype=torch.uint8)
>>> torch.equal(a, a)
True

eq 比较张量中的每个数据,equal 比较整个张量

以上这篇PyTorch中Tensor的数据统计示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用python实现拉钩网上的FizzBuzzWhizz问题示例
May 05 Python
Python的__builtin__模块中的一些要点知识
May 02 Python
在Django中创建动态视图的教程
Jul 15 Python
简单了解OpenCV是个什么东西
Nov 10 Python
浅谈python中字典append 到list 后值的改变问题
May 04 Python
详解pandas.DataFrame中删除包涵特定字符串所在的行
Apr 04 Python
python实现图片九宫格分割
Mar 07 Python
Django使用uwsgi部署时的配置以及django日志文件的处理方法
Aug 30 Python
三步解决python PermissionError: [WinError 5]拒绝访问的情况
Apr 22 Python
Pycharm 2020.1 版配置优化的详细教程
Aug 07 Python
django中cookiecutter的使用教程
Dec 03 Python
python 制作一个gui界面的翻译工具
May 14 Python
pytorch实现Tensor变量之间的转换
Feb 17 #Python
Macbook安装Python最新版本、GUI开发环境、图像处理、视频处理环境详解
Feb 17 #Python
PyCharm无法识别PyQt5的2种解决方法,ModuleNotFoundError: No module named 'pyqt5'
Feb 17 #Python
python识别验证码图片实例详解
Feb 17 #Python
Python pyautogui模块实现鼠标键盘自动化方法详解
Feb 17 #Python
Matplotlib使用字符串代替变量绘制散点图的方法
Feb 17 #Python
关于tf.TFRecordReader()函数的用法解析
Feb 17 #Python
You might like
PHP 字符串操作入门教程
2006/12/06 PHP
php一个找二层目录的小东东
2012/08/02 PHP
Laravel中Trait的用法实例详解
2016/03/16 PHP
php基于ob_start(ob_gzhandler)实现网页压缩功能的方法
2017/02/18 PHP
JQuery中对服务器控件 DropdownList, RadioButtonList, CheckboxList的操作总结
2011/06/28 Javascript
js 控制下拉菜单刷新的方法
2013/03/03 Javascript
鼠标滚轮控制网页横向移动实现思路
2013/03/22 Javascript
JavaScript中的变量作用域介绍
2014/12/31 Javascript
jquery实现标签上移、下移、置顶
2015/04/26 Javascript
jQuery解析与处理服务器端返回xml格式数据的方法详解
2016/07/04 Javascript
vue+vue-router转场动画的实例代码
2018/09/01 Javascript
koa socket即时通讯的示例代码
2018/09/07 Javascript
JS实现简单的抽奖转盘效果示例
2019/02/16 Javascript
简单通过settimeout看javascript的运行机制
2019/05/10 Javascript
微信小程序在其他页面监听globalData中值的变化
2019/07/15 Javascript
详解JavaScript作用域 闭包
2020/07/29 Javascript
[00:36]DOTA2上海特级锦标赛 Alliance战队宣传片
2016/03/04 DOTA
[01:07:19]DOTA2-DPC中国联赛 正赛 CDEC vs XG BO3 第一场 1月19日
2021/03/11 DOTA
Python实现去除代码前行号的方法
2015/03/10 Python
python采集百度百科的方法
2015/06/05 Python
Anaconda多环境多版本python配置操作方法
2017/09/12 Python
对pandas将dataframe中某列按照条件赋值的实例讲解
2018/11/29 Python
python hbase读取数据发送kafka的方法
2018/12/27 Python
python中import与from方法总结(推荐)
2019/03/21 Python
python使用rsa非对称加密过程解析
2019/12/28 Python
python多维数组分位数的求取方式
2020/03/03 Python
详解用Python进行时间序列预测的7种方法
2020/03/13 Python
python从Oracle读取数据生成图表
2020/10/14 Python
HTML块级标签汇总(小篇)
2016/07/13 HTML / CSS
市场营销求职信范文
2014/02/21 职场文书
电钳工人个人求职信
2014/05/10 职场文书
保安公司服务承诺书
2014/05/28 职场文书
2015元旦晚会主持词(开场白+结束语)
2014/12/14 职场文书
寻衅滋事罪辩护词
2015/05/21 职场文书
离婚答辩状怎么写
2015/05/22 职场文书
JPA 通过Specification如何实现复杂查询
2021/11/23 Java/Android