Posted in Python onJune 09, 2018
两种方式
>>> import numpy as np >>> import pandas as pd Backend TkAgg is interactive backend. Turning interactive mode on. >>> np.random.seed(1) >>> df_test = pd.DataFrame(np.random.randn(4,4)* 4 + 3) >>> df_test 0 1 2 3 0 9.497381 0.552974 0.887313 -1.291874 1 6.461631 -6.206155 9.979247 -0.044828 2 4.276156 2.002518 8.848432 -5.240563 3 1.710331 1.463783 7.535078 -1.399565 >>> df_test_1 = df_test >>> df_test.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) #方法一 0 1 2 3 0 1.000000 0.823413 0.000000 0.759986 1 0.610154 0.000000 1.000000 1.000000 2 0.329499 1.000000 0.875624 0.000000 3 0.000000 0.934370 0.731172 0.739260 >>> (df_test_1 - df_test_1.min()) / (df_test_1.max() - df_test_1.min())#方法二 0 1 2 3 0 1.000000 0.823413 0.000000 0.759986 1 0.610154 0.000000 1.000000 1.000000 2 0.329499 1.000000 0.875624 0.000000 3 0.000000 0.934370 0.731172 0.739260
结果一致且正确
以上这篇pandas 对每一列数据进行标准化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pandas 对每一列数据进行标准化的方法
- Author -
隔壁的老王声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@