Python八大常见排序算法定义、实现及时间消耗效率分析


Posted in Python onApril 27, 2018

本文实例讲述了Python八大常见排序算法定义、实现及时间消耗效率分析。分享给大家供大家参考,具体如下:

昨晚上开始总结了一下常见的几种排序算法,由于之前我已经写了好几篇排序的算法的相关博文了现在总结一下的话可以说是很方便的,这里的目的是为了更加完整详尽的总结一下这些排序算法,为了复习基础的东西,从冒泡排序、直接插入排序、选择排序、归并排序、希尔排序、桶排序、堆排序。快速排序入手来分析和实现,在最后也给出来了简单的时间统计,重在原理、算法基础,其他的次之,这些东西的熟练掌握不算是对之后的工作或者接下来的准备面试都是很有帮助的,算法重在理解内在含义和理论基础,在实现的时候才能避开陷阱少出错误,这不是说练习的时候有错误不好而是说,有些不该出现的错误尽量还是少出现的好,毕竟好的编程习惯是离不开严格的约束的,好了,这里就不多说了,复习一下基础知识,共同学习吧,下面是具体实现,注释应该都很详细,就不解释了:

#!usr/bin/env python
#encoding:utf-8
'''''
__Author__:沂水寒城
功能:八大排序算法
'''
import time
import random
time_dict={}
def time_deco(sort_func):
  '''''
  时间计算的装饰器函数,可用于计算函数执行时间
  '''
  def wrapper(num_list):
    start_time=time.time()
    res=sort_func(num_list)
    end_time=time.time()
    time_dict[str(sort_func)]=(end_time-start_time)*1000
    print '耗时为:',(end_time-start_time)*1000
    print '结果为:', res
  return wrapper
def random_nums_generator(max_value=1000, total_nums=20):
  '''''
  随机数列表生成器
  一些常用函数:
  random随机数生成
  random.random()用于生成一个0到1之间的随机数:0 <= n < 1.0;
  random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。min(a,b) <= n <= max(a,b);
  randdom.randint(a, b), 用于生成一个指定范围内的整数,其中a是下限,b是上限: a<= n <= b;
  random.randrange(start, stop, step), 从指定范围内,按指定基数递增的集合获取一个随机数;
  random.choice(sequence), 从序列中获取一个随机元素;
  random.shuffle(x), 用于将一个列表中的元素打乱;
  random.sample(sequence, k), 从指定序列中随机获取指定长度的片断;
  '''
  num_list=[]
  for i in range(total_nums):
    num_list.append(random.randint(0,max_value))
  return num_list
#@time_deco
def Bubble_sort(num_list):
  '''''
  冒泡排序,时间复杂度O(n^2),空间复杂度O(1),是稳定排序
  '''
  for i in range(len(num_list)):
    for j in range(i,len(num_list)):
      if num_list[i]>num_list[j]: #这里是升序排序
        num_list[i], num_list[j]=num_list[j], num_list[i]
  return num_list
#@time_deco
def Insert_sort(num_list):
  '''''
  直接插入排序,时间复杂度O(n^2),空间复杂度O(1),是稳定排序
  '''
  for i in range(len(num_list)):
    for j in range(0,i):
      if num_list[i]<num_list[j]: #这里是升序排序,跟冒泡排序差别在于,冒泡是向后遍历,这个是向前遍历
        num_list[i], num_list[j]=num_list[j], num_list[i]
  return num_list
#@time_deco
def Select_sort(num_list):
  '''''
  选择排序,时间复杂度O(n^2),空间复杂度O(1),不是稳定排序
  '''
  for i in range(len(num_list)):
    min_value_index=i
    for j in range(i, len(num_list)):
      if num_list[j]<num_list[min_value_index]:
        min_value_index=j #乍一看,感觉冒泡,选择,插入都很像,选择跟冒泡的区别在于:冒泡是发现大
                 #小数目顺序不对就交换,而选择排序是一轮遍历结束后选出最小值才交换,效率更高
    num_list[i], num_list[min_value_index]=num_list[min_value_index], num_list[i]
  return num_list
#@time_deco
def Merge_sort(num_list):
  '''''
  归并排序,时间复杂度O(nlog₂n),空间复杂度:O(1),是稳定排序
  '''
  if len(num_list)==1:
    return num_list
  length=len(num_list)/2
  list1=num_list[:length]
  list2=num_list[length:]
  result_list=[]
  while len(list1) and len(list2):
    if list1[0]<=list2[0]:
      result_list.append(list1[0])
      del list1[0] #这里需要删除列表中已经被加入到加过列表中的元素,否则最后比较完后列表
    else:       #中剩余元素无法添加
      result_list.append(list2[0])
      del list1[0]
  if len(list1): #遍历比较完毕后列表中剩余元素的添加
    result_list+=list1
  else:
    result_list+=list2
  return result_list
#@time_deco
def Shell_sort(num_list):
  '''''
  希尔排序,时间复杂度:O(n),空间复杂度:O(n^2),不是稳定排序算法
  '''
  new_list = []
  for one_num in num_list:
    new_list.append(one_num)
  count=len(new_list)
  step=count/2;
  while step>0:
    i=0
    while i<count:
      j=i+step
      while j<count:
        t=new_list.pop(j)
        k=j-step
        while k>=0:
          if t>=new_list[k]:
            new_list.insert(k+1, t)
            break
          k=k-step
        if k<0:
          new_list.insert(0, t)
        #print '---------本轮结果为:--------'
        #print new_list
        j=j+step
        #print j
      i=i+1
      #print i
    step=step/2   #希尔排序是一个更新步长的算法
  return new_list
#@time_deco
def Tong_sort(num_list):
  '''''
  桶排序,时间复杂度O(1),空间复杂度与最大数字有关,可以认为是O(n),典型的空间换时间的做法
  '''
  original_list = []
  total_num=max(num_list) #获取桶的个数
  for i in range(total_num+1): #要注意这里需要的数组元素个数总数比total_num数多一个因为下标从0开始
    original_list.append(0)
  for num in num_list:
    original_list[num] += 1
  result_list = []
  for j in range(len(original_list)):
    if original_list[j] != 0:
      for h in range(0,original_list[j]):
        result_list.append(j)
  return result_list
def Quick_sort(num_list):
  '''''
  快速排序,时间复杂度:O(nlog₂n),空间复杂度:O(nlog₂n),不是稳定排序
  '''
  if len(num_list)<2:
    return num_list
  left_list = [] #存放比基准结点小的元素
  right_list = [] #存放比基准元素大的元素
  base_node = num_list.pop(0) #在这里采用pop()方法的原因就是需要移除这个基准结点,并且赋值给base_node这个变量
                #在这里不能使用del()方法,因为删除之后无法再赋值给其他变量使用,导致最终数据缺失
                #快排每轮可以确定一个元素的位置,之后递归地对两边的元素进行排序
  for one_num in num_list:
    if one_num < base_node:
      left_list.append(one_num)
    else:
      right_list.append(one_num)
  return Quick_sort(left_list) + [base_node] + Quick_sort(right_list)
def Heap_adjust(num_list, i, size):
  left_child = 2*i+1
  right_child = 2*i+2
  max_temp = i
  #print left_child, right_child, max_temp
  if left_child<size and num_list[left_child]>num_list[max_temp]:
    max_temp = left_child
  if right_child<size and num_list[right_child]>num_list[max_temp]:
    max_temp = right_child
  if max_temp != i:
    num_list[i], num_list[max_temp] = num_list[max_temp], num_list[i]
    Heap_adjust(num_list, max_temp, size) #避免调整之后以max为父节点的子树不是堆
def Create_heap(num_list, size):
  a = size/2-1
  for i in range(a, -1, -1):
    #print '**********', i
    Heap_adjust(num_list, i, size)
#@time_deco
def Heap_sort(num_list):
  '''''
  堆排序,时间复杂度:O(nlog₂n),空间复杂度:O(1),不是稳定排序
  '''
  size=len(num_list)
  Create_heap(num_list, size)
  i = size-1
  while i > 0:
    num_list[0], num_list[i] = num_list[i], num_list[0]
    size -= 1
    i -= 1
    Heap_adjust(num_list, 0, size)
  return num_list
if __name__ == '__main__':
  num_list=random_nums_generator(max_value=100, total_nums=50)
  print 'Bubble_sort', Bubble_sort(num_list)
  print 'Insert_sort', Insert_sort(num_list)
  print 'Select_sort', Select_sort(num_list)
  print 'Merge_sort', Merge_sort(num_list)
  print 'Shell_sort', Shell_sort(num_list)
  print 'Tong_sort', Tong_sort(num_list)
  print 'Heap_sort', Heap_sort(num_list)
  print 'Quick_sort', Quick_sort(num_list)
  # print '-----------------------------------------------------------------------------'
  # for k,v in time_dict.items():
  #   print k, v

结果如下:

Bubble_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Insert_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Select_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Merge_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Shell_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Tong_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Heap_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]
Quick_sort [34, 49, 63, 67, 71, 72, 75, 120, 128, 181, 185, 191, 202, 217, 241, 257, 259, 260, 289, 293, 295, 304, 311, 326, 362, 396, 401, 419, 423, 456, 525, 570, 618, 651, 701, 711, 717, 718, 752, 774, 813, 816, 845, 885, 894, 900, 918, 954, 976, 998]

这里没有使用到装饰器,主要自己对这个装饰器不太了解,在快速排序的时候报错了,也没有去解决,这里简单贴一下一个测试样例使用装饰器的结果吧:

Bubble_sort 耗时为: 0.0290870666504
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Insert_sort 耗时为: 0.0209808349609
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Select_sort 耗时为: 0.0259876251221
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Merge_sort 耗时为: 0.0138282775879
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Shell_sort 耗时为: 0.113964080811
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Tong_sort 耗时为: 0.0460147857666
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Heap_sort 耗时为: 0.046968460083
结果为: [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
None
Quick_sort [5, 45, 46, 63, 81, 83, 89, 89, 89, 90]
-----------------------------------------------------------------------------
<function Shell_sort at 0x7f8ab9d34410> 0.113964080811
<function Select_sort at 0x7f8ab9d34230> 0.0259876251221
<function Insert_sort at 0x7f8ab9d34140> 0.0209808349609
<function Heap_sort at 0x7f8ab9d34758> 0.046968460083
<function Merge_sort at 0x7f8ab9d34320> 0.0138282775879
<function Tong_sort at 0x7f8ab9d34500> 0.0460147857666
<function Bubble_sort at 0x7f8ab9d34050> 0.0290870666504

接下来有时间的话我想学一下装饰器的东西,感觉对于模式化的东西装饰器简直就是一个神器,但是得明白会用会写才行哈!

Python 相关文章推荐
让python json encode datetime类型
Dec 28 Python
python中readline判断文件读取结束的方法
Nov 08 Python
使用Python神器对付12306变态验证码
Jan 05 Python
TensorFlow用expand_dim()来增加维度的方法
Jul 26 Python
Python脚本修改阿里云的访问控制列表的方法
Mar 08 Python
python 猴子补丁(monkey patch)
Jun 26 Python
Python OpenCV 调用摄像头并截图保存功能的实现代码
Jul 02 Python
python多线程并发及测试框架案例
Oct 15 Python
django models里数据表插入数据id自增操作
Jul 15 Python
flask开启多线程的具体方法
Aug 02 Python
python 邮件检测工具mmpi的使用
Jan 04 Python
解析目标检测之IoU
Jun 26 Python
python读取csv文件并把文件放入一个list中的实例讲解
Apr 27 #Python
python脚本生成caffe train_list.txt的方法
Apr 27 #Python
如何使用Python的Requests包实现模拟登陆
Apr 27 #Python
Python可变参数*args和**kwargs用法实例小结
Apr 27 #Python
python实现对文件中图片生成带标签的txt文件方法
Apr 27 #Python
python模拟表单提交登录图书馆
Apr 27 #Python
Python 读取指定文件夹下的所有图像方法
Apr 27 #Python
You might like
支付宝服务窗API接口开发php版本
2016/07/20 PHP
php基于curl实现随机ip地址抓取内容的方法
2016/10/11 PHP
PHP基于imagick扩展实现合成图片的两种方法【附imagick扩展下载】
2017/11/14 PHP
用PHP的反射实现委托模式的讲解
2019/03/22 PHP
php输出形式实例整理
2020/05/05 PHP
javascript 判断字符串是否包含某字符串及indexOf使用示例
2013/10/18 Javascript
jquery实现弹出窗口效果的实例代码
2013/11/28 Javascript
javascript获取鼠标点击元素对象(示例代码)
2013/12/20 Javascript
js在输入框屏蔽按键,只能键入数字的示例代码
2014/01/03 Javascript
JavaScript 对象字面量讲解
2016/06/06 Javascript
微信小程序 教程之小程序配置
2016/10/17 Javascript
JavaScript实现窗口抖动效果
2016/10/19 Javascript
使用mock.js随机数据和使用express输出json接口的实现方法
2018/01/07 Javascript
jQuery轻量级表单模型验证插件
2018/10/15 jQuery
js实现下拉框二级联动
2018/12/04 Javascript
jQuery位置选择器用法实例分析
2019/06/28 jQuery
Python中zip()函数用法实例教程
2014/07/31 Python
深入解读Python解析XML的几种方式
2016/02/16 Python
python爬虫实战之最简单的网页爬虫教程
2017/08/13 Python
Django 浅谈根据配置生成SQL语句的问题
2018/05/29 Python
python 把列表转化为字符串的方法
2018/10/23 Python
python实现得到当前登录用户信息的方法
2019/06/21 Python
Python实现基于SVM的分类器的方法
2019/07/19 Python
python 实现按对象传值
2019/12/26 Python
Topshop美国官网:英国快速时尚品牌
2019/05/16 全球购物
JDK安装目录下有哪些内容
2014/08/25 面试题
会计专业毕业生推荐信
2013/11/05 职场文书
自动化专业个人求职信范文
2013/11/29 职场文书
公司年会演讲稿范文
2014/01/11 职场文书
DIY手工制作经营店创业计划书
2014/02/01 职场文书
家具商场的活动方案
2014/08/16 职场文书
租房协议书范例
2014/10/14 职场文书
本溪关门山导游词
2015/02/09 职场文书
大学生自荐书范文
2015/03/05 职场文书
html实现随机点名器的示例代码
2021/04/02 Javascript
Python实现位图分割的效果
2021/11/20 Python