Python基于numpy灵活定义神经网络结构的方法


Posted in Python onAugust 19, 2017

本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:

用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

一、用法

1). 定义一个三层神经网络:

'''示例一'''
nn = NeuralNetworks([3,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

输入层节点数目:3

隐藏层节点数目:4

输出层节点数目:2

2).定义一个五层神经网络:

'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

输入层节点数目:3

隐藏层1节点数目:5

隐藏层2节点数目:7

隐藏层3节点数目:4

输出层节点数目:2

二、实现

如下实现方式为本人(@hhh5460)原创。 要点: dtype=object

import numpy as np
class NeuralNetworks(object):
  ''''''
  def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
    '''搭建神经网络框架'''
    # 各层节点数目 (向量)
    self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
    self.size = self.n.size # 层的总数
    # 层 (向量)
    self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
    self.a = np.empty(self.size, dtype=object)
    self.data_a = np.empty(self.size, dtype=object)
    # 偏置 (向量)
    self.b = np.empty(self.size, dtype=object)
    self.delta_b = np.empty(self.size, dtype=object)
    # 权 (矩阵)
    self.w = np.empty(self.size, dtype=object)
    self.delta_w = np.empty(self.size, dtype=object)
    # 填充
    for i in range(self.size):
      self.a[i] = np.zeros(self.n[i]) # 全零
      self.z[i] = np.zeros(self.n[i]) # 全零
      self.data_a[i] = np.zeros(self.n[i]) # 全零
      if i < self.size - 1:
        self.b[i] = np.ones(self.n[i+1])  # 全一
        self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
        mu, sigma = 0, 0.1 # 均值、方差
        self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
        self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零

下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:

import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
  ''''''
  def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
    '''搭建神经网络框架'''
    self.n_iter = n_iter # 迭代次数
    self.error = error # 允许最大误差
    self.alpha = alpha # 学习速率
    self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
    if n_layers is None:
      raise '各层的节点数目必须设置!'
    elif not isinstance(n_layers, list):
      raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
    # 节点数目 (向量)
    self.n = np.array(n_layers)
    self.size = self.n.size # 层的总数
    # 层 (向量)
    self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
    self.z = np.empty(self.size, dtype=object)
    # 偏置 (向量)
    self.b = np.empty(self.size, dtype=object)
    self.delta_b = np.empty(self.size, dtype=object)
    # 权 (矩阵)
    self.w = np.empty(self.size, dtype=object)
    self.delta_w = np.empty(self.size, dtype=object)
    # 残差 (向量)
    self.data_a = np.empty(self.size, dtype=object)
    # 填充
    for i in range(self.size):
      self.a[i] = np.zeros(self.n[i]) # 全零
      self.z[i] = np.zeros(self.n[i]) # 全零
      self.data_a[i] = np.zeros(self.n[i]) # 全零
      if i < self.size - 1:
        self.b[i] = np.ones(self.n[i+1])  # 全一
        self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
        mu, sigma = 0, 0.1 # 均值、方差
        self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
        self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
    # 激活函数
    self.active_functions = {
      'sigmoid': self.sigmoid,
      'tanh': self.tanh,
      'radb': self.radb,
      'line': self.line,
    }
    # 激活函数的导函数
    self.derivative_functions = {
      'sigmoid': self.sigmoid_d,
      'tanh': self.tanh_d,
      'radb': self.radb_d,
      'line': self.line_d,
    }
    if active_type is None:
      self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
    else:
      self.active_type = active_type
  def sigmoid(self, z):
    if np.max(z) > 600:
      z[z.argmax()] = 600
    return 1.0 / (1.0 + np.exp(-z))
  def tanh(self, z):
    return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
  def radb(self, z):
    return np.exp(-z * z)
  def line(self, z):
    return z
  def sigmoid_d(self, z):
    return z * (1.0 - z)
  def tanh_d(self, z):
    return 1.0 - z * z
  def radb_d(self, z):
    return -2.0 * z * np.exp(-z * z)
  def line_d(self, z):
    return np.ones(z.size) # 全一
  def forward(self, x):
    '''正向传播(在线)''' 
    # 用样本 x 走一遍,刷新所有 z, a
    self.a[0] = x
    for i in range(self.size - 1):
      self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
      self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
  def err(self, X, Y):
    '''误差'''
    last = self.size-1
    err = 0.0
    for x, y in zip(X, Y):
      self.forward(x)
      err += 0.5 * np.sum((self.a[last] - y)**2)
    err /= X.shape[0]
    err += sum([np.sum(w) for w in self.w[:last]**2])
    return err
  def backward(self, y):
    '''反向传播(在线)'''
    last = self.size - 1
    # 用样本 y 走一遍,刷新所有delta_w, delta_b
    self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
    for i in range(last-1, 1, -1):
      self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
      # 计算偏导
      p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
      p_b = self.data_a[i+1]
      # 更新 delta_w, delta_w
      self.delta_w[i] = self.delta_w[i] + p_w
      self.delta_b[i] = self.delta_b[i] + p_b
  def update(self, n_samples):
    '''更新权重参数'''
    last = self.size - 1
    for i in range(last):
      self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
      self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
  def fit(self, X, Y):
    '''拟合'''
    for i in range(self.n_iter):
      # 用所有样本,依次
      for x, y in zip(X, Y):
        self.forward(x) # 前向,更新 a, z;
        self.backward(y) # 后向,更新 delta_w, delta_b
      # 然后,更新 w, b
      self.update(len(X))
      # 计算误差
      err = self.err(X, Y)
      if err < self.error:
        break
      # 整千次显示误差(否则太无聊!)
      if i % 1000 == 0:
        print('iter: {}, error: {}'.format(i, err))
  def predict(self, X):
    '''预测'''
    last = self.size - 1
    res = []
    for x in X:
      self.forward(x)
      res.append(self.a[last])
    return np.array(res)
if __name__ == '__main__':
  nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
  X = np.array([[0.,0.], # 准备数据
         [0.,1.],
         [1.,0.],
         [1.,1.]])
  y = np.array([0,1,1,0])
  nn.fit(X,y)     # 拟合
  print(nn.predict(X)) # 预测

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
基于python爬虫数据处理(详解)
Jun 10 Python
Python数据结构与算法之使用队列解决小猫钓鱼问题
Dec 14 Python
python数据封装json格式数据
Mar 04 Python
Python 实现字符串中指定位置插入一个字符
May 02 Python
基于python实现学生管理系统
Oct 17 Python
使用Python和Scribus创建一个RGB立方体的方法
Jul 17 Python
python判断一个对象是否可迭代的例子
Jul 22 Python
python实现复制文件到指定目录
Oct 16 Python
Python编程快速上手——强口令检测算法案例分析
Feb 29 Python
使用python无账号无限制获取企查查信息的实例代码
Apr 17 Python
python中数字是否为可变类型
Jul 08 Python
python四种出行路线规划的实现
Jun 23 Python
Python正则捕获操作示例
Aug 19 #Python
python 删除大文件中的某一行(最有效率的方法)
Aug 19 #Python
在java中如何定义一个抽象属性示例详解
Aug 18 #Python
python中将函数赋值给变量时需要注意的一些问题
Aug 18 #Python
python中子类调用父类函数的方法示例
Aug 18 #Python
Python设计实现的计算器功能完整实例
Aug 18 #Python
python中类和实例如何绑定属性与方法示例详解
Aug 18 #Python
You might like
BBS(php &amp; mysql)完整版(四)
2006/10/09 PHP
PHP四大安全策略
2014/03/12 PHP
PHP反射机制用法实例
2014/08/28 PHP
PHP程序员常见的40个陋习,你中了几个?
2014/11/20 PHP
PHP asXML()函数讲解
2019/02/03 PHP
JQuery实现用户名无刷新验证的小例子
2013/03/22 Javascript
用javascript关闭本窗口技巧小结
2014/09/05 Javascript
angularjs指令中的compile与link函数详解
2014/12/06 Javascript
DOM基础教程之事件对象
2015/01/20 Javascript
json格式数据的添加,删除及排序方法
2016/01/21 Javascript
JS中利用localStorage防止页面动态添加数据刷新后数据丢失
2017/03/10 Javascript
js实现鼠标拖拽多选功能示例
2017/08/01 Javascript
浅谈Node Inspector 代理实现
2017/10/19 Javascript
详解如何在angular2中获取节点
2017/11/23 Javascript
Vue组件开发技巧总结
2018/03/04 Javascript
element vue validate验证名称重复 输入框与后台重复验证 特殊字符 字符长度 及注意事项小结【实例代码】
2018/11/20 Javascript
微信小程序如何实现精确的日期时间选择器
2020/01/21 Javascript
node.js通过url读取文件
2020/10/16 Javascript
介绍Python中的一些高级编程技巧
2015/04/02 Python
python实现通过代理服务器访问远程url的方法
2015/04/29 Python
基于Django用户认证系统详解
2018/02/21 Python
将python文件打包成EXE应用程序的方法
2019/05/22 Python
Python-Seaborn热图绘制的实现方法
2019/07/15 Python
Python如何筛选序列中的元素的方法实现
2019/07/15 Python
使用python分析统计自己微信朋友的信息
2019/07/19 Python
python单例模式原理与创建方法实例分析
2019/10/26 Python
在python中使用pyspark读写Hive数据操作
2020/06/06 Python
使用phonegap克隆和删除联系人的实现方法
2017/03/31 HTML / CSS
工业设计专业个人求职信范文
2013/12/28 职场文书
会计的岗位职责
2014/03/15 职场文书
腾讯广告词
2014/03/19 职场文书
先进事迹报告会主持词
2014/04/02 职场文书
井冈山红色之旅心得体会
2014/10/07 职场文书
12.4法制宣传日标语
2014/10/08 职场文书
简爱读书笔记
2015/06/26 职场文书
原生CSS实现文字无限轮播的通用方法
2021/03/30 HTML / CSS