Python基于numpy灵活定义神经网络结构的方法


Posted in Python onAugust 19, 2017

本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:

用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

一、用法

1). 定义一个三层神经网络:

'''示例一'''
nn = NeuralNetworks([3,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

输入层节点数目:3

隐藏层节点数目:4

输出层节点数目:2

2).定义一个五层神经网络:

'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

输入层节点数目:3

隐藏层1节点数目:5

隐藏层2节点数目:7

隐藏层3节点数目:4

输出层节点数目:2

二、实现

如下实现方式为本人(@hhh5460)原创。 要点: dtype=object

import numpy as np
class NeuralNetworks(object):
  ''''''
  def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
    '''搭建神经网络框架'''
    # 各层节点数目 (向量)
    self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
    self.size = self.n.size # 层的总数
    # 层 (向量)
    self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
    self.a = np.empty(self.size, dtype=object)
    self.data_a = np.empty(self.size, dtype=object)
    # 偏置 (向量)
    self.b = np.empty(self.size, dtype=object)
    self.delta_b = np.empty(self.size, dtype=object)
    # 权 (矩阵)
    self.w = np.empty(self.size, dtype=object)
    self.delta_w = np.empty(self.size, dtype=object)
    # 填充
    for i in range(self.size):
      self.a[i] = np.zeros(self.n[i]) # 全零
      self.z[i] = np.zeros(self.n[i]) # 全零
      self.data_a[i] = np.zeros(self.n[i]) # 全零
      if i < self.size - 1:
        self.b[i] = np.ones(self.n[i+1])  # 全一
        self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
        mu, sigma = 0, 0.1 # 均值、方差
        self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
        self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零

下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:

import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
  ''''''
  def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
    '''搭建神经网络框架'''
    self.n_iter = n_iter # 迭代次数
    self.error = error # 允许最大误差
    self.alpha = alpha # 学习速率
    self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
    if n_layers is None:
      raise '各层的节点数目必须设置!'
    elif not isinstance(n_layers, list):
      raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
    # 节点数目 (向量)
    self.n = np.array(n_layers)
    self.size = self.n.size # 层的总数
    # 层 (向量)
    self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
    self.z = np.empty(self.size, dtype=object)
    # 偏置 (向量)
    self.b = np.empty(self.size, dtype=object)
    self.delta_b = np.empty(self.size, dtype=object)
    # 权 (矩阵)
    self.w = np.empty(self.size, dtype=object)
    self.delta_w = np.empty(self.size, dtype=object)
    # 残差 (向量)
    self.data_a = np.empty(self.size, dtype=object)
    # 填充
    for i in range(self.size):
      self.a[i] = np.zeros(self.n[i]) # 全零
      self.z[i] = np.zeros(self.n[i]) # 全零
      self.data_a[i] = np.zeros(self.n[i]) # 全零
      if i < self.size - 1:
        self.b[i] = np.ones(self.n[i+1])  # 全一
        self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
        mu, sigma = 0, 0.1 # 均值、方差
        self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
        self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
    # 激活函数
    self.active_functions = {
      'sigmoid': self.sigmoid,
      'tanh': self.tanh,
      'radb': self.radb,
      'line': self.line,
    }
    # 激活函数的导函数
    self.derivative_functions = {
      'sigmoid': self.sigmoid_d,
      'tanh': self.tanh_d,
      'radb': self.radb_d,
      'line': self.line_d,
    }
    if active_type is None:
      self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
    else:
      self.active_type = active_type
  def sigmoid(self, z):
    if np.max(z) > 600:
      z[z.argmax()] = 600
    return 1.0 / (1.0 + np.exp(-z))
  def tanh(self, z):
    return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
  def radb(self, z):
    return np.exp(-z * z)
  def line(self, z):
    return z
  def sigmoid_d(self, z):
    return z * (1.0 - z)
  def tanh_d(self, z):
    return 1.0 - z * z
  def radb_d(self, z):
    return -2.0 * z * np.exp(-z * z)
  def line_d(self, z):
    return np.ones(z.size) # 全一
  def forward(self, x):
    '''正向传播(在线)''' 
    # 用样本 x 走一遍,刷新所有 z, a
    self.a[0] = x
    for i in range(self.size - 1):
      self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
      self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
  def err(self, X, Y):
    '''误差'''
    last = self.size-1
    err = 0.0
    for x, y in zip(X, Y):
      self.forward(x)
      err += 0.5 * np.sum((self.a[last] - y)**2)
    err /= X.shape[0]
    err += sum([np.sum(w) for w in self.w[:last]**2])
    return err
  def backward(self, y):
    '''反向传播(在线)'''
    last = self.size - 1
    # 用样本 y 走一遍,刷新所有delta_w, delta_b
    self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
    for i in range(last-1, 1, -1):
      self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
      # 计算偏导
      p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
      p_b = self.data_a[i+1]
      # 更新 delta_w, delta_w
      self.delta_w[i] = self.delta_w[i] + p_w
      self.delta_b[i] = self.delta_b[i] + p_b
  def update(self, n_samples):
    '''更新权重参数'''
    last = self.size - 1
    for i in range(last):
      self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
      self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
  def fit(self, X, Y):
    '''拟合'''
    for i in range(self.n_iter):
      # 用所有样本,依次
      for x, y in zip(X, Y):
        self.forward(x) # 前向,更新 a, z;
        self.backward(y) # 后向,更新 delta_w, delta_b
      # 然后,更新 w, b
      self.update(len(X))
      # 计算误差
      err = self.err(X, Y)
      if err < self.error:
        break
      # 整千次显示误差(否则太无聊!)
      if i % 1000 == 0:
        print('iter: {}, error: {}'.format(i, err))
  def predict(self, X):
    '''预测'''
    last = self.size - 1
    res = []
    for x in X:
      self.forward(x)
      res.append(self.a[last])
    return np.array(res)
if __name__ == '__main__':
  nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
  X = np.array([[0.,0.], # 准备数据
         [0.,1.],
         [1.,0.],
         [1.,1.]])
  y = np.array([0,1,1,0])
  nn.fit(X,y)     # 拟合
  print(nn.predict(X)) # 预测

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python 第一步 hello world
Sep 25 Python
Python中type的构造函数参数含义说明
Jun 21 Python
Ubuntu安装Jupyter Notebook教程
Oct 18 Python
Python数据结构与算法之二叉树结构定义与遍历方法详解
Dec 12 Python
Python实现替换文件中指定内容的方法
Mar 19 Python
pandas数据预处理之dataframe的groupby操作方法
Apr 13 Python
python仿evething的文件搜索器实例代码
May 13 Python
python爬取百度贴吧前1000页内容(requests库面向对象思想实现)
Aug 10 Python
基于python实现生成指定大小txt文档
Jul 20 Python
python实现三种随机请求头方式
Jan 05 Python
完美处理python与anaconda环境变量的冲突问题
Apr 07 Python
详解OpenCV获取高动态范围(HDR)成像
Apr 29 Python
Python正则捕获操作示例
Aug 19 #Python
python 删除大文件中的某一行(最有效率的方法)
Aug 19 #Python
在java中如何定义一个抽象属性示例详解
Aug 18 #Python
python中将函数赋值给变量时需要注意的一些问题
Aug 18 #Python
python中子类调用父类函数的方法示例
Aug 18 #Python
Python设计实现的计算器功能完整实例
Aug 18 #Python
python中类和实例如何绑定属性与方法示例详解
Aug 18 #Python
You might like
把PHP安装为Apache DSO
2006/10/09 PHP
PHP实现获取图片颜色值的方法
2014/07/11 PHP
Laravel模板引擎Blade中section的一些标签的区别介绍
2015/02/10 PHP
PHP 实现的将图片转换为TXT
2015/10/21 PHP
PHP字典树(Trie树)定义与实现方法示例
2017/10/09 PHP
解决jQuery插件tipswindown与hintbox冲突
2010/11/05 Javascript
js+JQuery返回顶部功能如何实现
2012/12/03 Javascript
jQuery函数的等价原生函数代码示例
2013/05/27 Javascript
JQuery实现左右滚动菜单特效
2015/09/28 Javascript
js实现页面刷新滚动条位置不变
2016/11/27 Javascript
bootstrap模态框消失问题的解决方法
2016/12/02 Javascript
nodejs构建本地web测试服务器 如何解决访问静态资源问题
2017/07/14 NodeJs
详解微信小程序中的页面代码中的模板的封装
2017/10/12 Javascript
解决mpvue + vuex 开发微信小程序vuex辅助函数mapState、mapGetters不可用问题
2018/08/03 Javascript
Vue组件通信的几种实现方法
2019/04/25 Javascript
jQuery内容选择器与表单选择器实例分析
2019/06/28 jQuery
对vuex中getters计算过滤操作详解
2019/11/06 Javascript
Node如何后台数据库使用增删改查功能
2019/11/21 Javascript
vue实现员工信息录入功能
2020/06/11 Javascript
详解为什么Vue中的v-if和v-for不建议一起用
2021/01/13 Vue.js
用vite搭建vue3应用的实现方法
2021/02/22 Vue.js
老生常谈python之鸭子类和多态
2017/06/13 Python
Python编程argparse入门浅析
2018/02/07 Python
Python3+django2.0+apache2+ubuntu14部署网站上线的方法
2018/07/07 Python
在OpenCV里使用Camshift算法的实现
2019/11/22 Python
Python 实现Serial 与STM32J进行串口通讯
2019/12/18 Python
在keras中获取某一层上的feature map实例
2020/01/24 Python
python入门之井字棋小游戏
2020/03/05 Python
利用指针变量实现队列的入队操作
2012/04/07 面试题
毕业生求职自荐信怎么写
2014/01/08 职场文书
财务总监管理职责范文
2014/03/09 职场文书
新农村建设标语
2014/06/24 职场文书
优秀党务工作者先进事迹材料
2014/12/25 职场文书
员工年终考核评语
2014/12/31 职场文书
大学生党员个人总结
2015/02/13 职场文书
用Python提取PDF表格的方法
2021/04/11 Python