python中numpy基础学习及进行数组和矢量计算


Posted in Python onFebruary 12, 2017

前言

在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率,类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算。

下面来看下简单的例子

import numpy as np
 
data=np.array([2,5,6,8,3]) #构造一个简单的数组
 
print(data)

结果:

[2 5 6 8 3]
data1=np.array([[2,5,6,8,3],np.arange(5)]) #构建一个二维数组
 
print(data1)

结果:

[[2 5 6 8 3]
[0 1 2 3 4]]

我们也可以通过shape和dtype方法查看数组的维度和数据格式

print(data.shape)
print(data.dtype)
print(data1.shape)
print(data1.dtype)

结果:

(5,)
int32

(2, 5)
int32

可以看出data是一维数组,每组元素为5个,数据类型为32位int 类型

data1 为二维数组,每个组有5个元素,数据类型为32位int类型

有一个较好的区分方法是看打印结果中,中括号的层数和位置,就可以看出数组的维度,一层中括号代表一个维度。

其他的数组属性方法还有:

array.ndim   数组的维数,一维数组结果为1,二维数组打印结果为2

array.size     数组的元素个数

array.itemsiz   数组每个元素的字节大小

接下来我们了解下数组中的数据类型:

NumPy中的基本数据类型 

名称 描述
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

基础的数组运算

数组也可以进行我们常用的加减乘除运算

arr=np.array(np.arange(10))
arr1=np.array(np.arange(1,11))
print(arr*2)

结果:

[ 0 2 4 6 8 10 12 14 16 18]
print(arr+arr1)

结果:

[ 1 3 5 7 9 11 13 15 17 19]

注意,相加两个数组长度要一样

接下来我们看下数组索引

arr=np.arange(10)

用下标直接进行索引

print(arr[5])

结果为:

5

切片索引

print(arr[5:8])

结果为:

[5 6 7]

可以利用索引对数据进行更改操作

arr[5]=120
print(arr)

结果为:

[ 0 1 2 3 4 120 6 7 8 9]

可以看到下标为5的数已经变成120了。

此外,数组还可以进行布尔操作

arr=np.arange(5)
name=np.array(['a','b','b','c','a'])
print(name=='a')

结果为:

[ True False False False True]

即满足条件的数据全部以True的结果输出。

接下来我们可以利用name数组设置条件后的布尔值对arr数组进行相关操作

print(arr[name=='a'])

结果为:

[0 4]

即把arr中对应于name中a相对应位置的元素打印出来。

多条件操作

result=(name='a')|(name='c')
print(result)
print(name[result])

结果为:

[ True False False True True]
['a' 'c' 'a']

接下来,我们了解下ufunc方法

用于操作单个数组的函数有如下:

python中numpy基础学习及进行数组和矢量计算

用于操作两个或多个数组的方法

python中numpy基础学习及进行数组和矢量计算

相关的函数方法使用

np.meshgrid 用于生成多维矩阵

a,b=np.meshgrid(np.arange(1,5),np.arange(2,4))
print(a)
print(b)

结果为:

[[1 2 3 4]
[1 2 3 4]]
[[2 2 2 2]
[3 3 3 3]]

按照数据最少的数组形成数组

np.where 是三元表达式  x if  condition  else y的矢量化版本

arr1=np.arange(5)
arr2=np.arange(20,25)
condition=np.array([1,0,1,0,0])
result=np.where(condition,arr1,arr2)
print(arr1)
print(arr2)
print(result)

结果为:

[0 1 2 3 4]
[20 21 22 23 24]
[ 0 21 2 23 24]

可以看出,result的结果中,条件为1的显示数组arr1的内容,条件为0的显示arr2的内容

数学统计方法

在数组中我们也可以使用数学统计方法进行计数,例如sum mean  std  等

arr=np.random.randint(1,20,10)
print(arr)
print(np.mean(arr))
print(np.sum(arr))
print(np.std(arr))

结果为:

[19 14 8 13 13 10 10 9 19 7]
12.2
122
4.01995024845

具体的方法内容如下图所示:

python中numpy基础学习及进行数组和矢量计算

布尔型数组的相关统计方法

arr=np.arange(-20,10)
result=(arr>5).sum()
print(arr)
print(result)

结果为:

-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
-2 -1 0 1 2 3 4 5 6 7 8 9]

4

可以对数据进行判断后进行个数求和

其他的数组方法还有

python中numpy基础学习及进行数组和矢量计算

数据的读取和存储

python中numpy基础学习及进行数组和矢量计算 

线性函数的常用方法

arr=np.array([np.random.randint(1,10,5),np.random.randint(10,20,5)])
print(arr)
print(np.dot(arr,2))

结果为

[[ 4 6 5 1 6]
[14 16 11 10 18]]
[[ 8 12 10 2 12]
[28 32 22 20 36]]

dot方法可以进行矩阵相乘操作

其他方法如下图

python中numpy基础学习及进行数组和矢量计算 

最后我们了解下numpy中的随机数生成方法

上面的很多例子中我们已经用到了随机数生成,

arr=np.random.random(10)
print(arr)

结果为

[ 0.90051063 0.72818635 0.00411373 0.13154345 0.45513344 0.9700776
0.42150977 0.27728599 0.50888291 0.62288808]

其他形式的随机数生成方法

python中numpy基础学习及进行数组和矢量计算

总结

好了,以上就是这篇文章的全部内容了,了解了以上numpy的操作方法,基本的数据操作问题应该不是很大了。希望本文的内容对大家的学习或者工作能带来一定的帮助。

Python 相关文章推荐
Python多线程编程(三):threading.Thread类的重要函数和方法
Apr 05 Python
使用Python的Twisted框架实现一个简单的服务器
Apr 16 Python
python中日志logging模块的性能及多进程详解
Jul 18 Python
python代码过长的换行方法
Jul 19 Python
Python使用pymysql从MySQL数据库中读出数据的方法
Jul 25 Python
解决python写入带有中文的字符到文件错误的问题
Jan 31 Python
python实现向微信用户发送每日一句 python实现微信聊天机器人
Mar 27 Python
选择python进行数据分析的理由和优势
Jun 25 Python
python3中sorted函数里cmp参数改变详解
Mar 12 Python
基于python实现FTP文件上传与下载操作(ftp&sftp协议)
Apr 01 Python
Python HTTP下载文件并显示下载进度条功能的实现
Apr 02 Python
Sublime Text3最新激活注册码分享适用2020最新版 亲测可用
Nov 12 Python
python 数据清洗之数据合并、转换、过滤、排序
Feb 12 #Python
python3制作捧腹网段子页爬虫
Feb 12 #Python
python日志记录模块实例及改进
Feb 12 #Python
Windows下Python2与Python3两个版本共存的方法详解
Feb 12 #Python
使用Python绘制图表大全总结
Feb 11 #Python
Python 绘图和可视化详细介绍
Feb 11 #Python
Python实现多线程HTTP下载器示例
Feb 11 #Python
You might like
深入apache host的配置详解
2013/06/09 PHP
php代码审计比较有意思的例子
2014/05/07 PHP
PHP中的日期加减方法示例
2014/08/21 PHP
FastCGI 进程意外退出造成500错误
2015/07/26 PHP
php调用淘宝开放API实现根据卖家昵称获取卖家店铺ID的方法
2015/07/29 PHP
中止javascript执行的方法
2014/02/14 Javascript
div失去焦点事件实现思路
2014/04/22 Javascript
使用JavaScript实现连续滚动字幕效果的方法
2015/07/07 Javascript
Nodejs中 npm常用命令详解
2016/07/04 NodeJs
基于jQuery实现中英文切换导航条效果
2016/09/18 Javascript
javascript事件捕获机制【深入分析IE和DOM中的事件模型】
2016/12/15 Javascript
vue+element实现批量删除功能的示例
2018/02/28 Javascript
记录vue做微信自定义分享的一些问题
2019/09/12 Javascript
[57:47]Fnatic vs Winstrike 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
Python实现对PPT文件进行截图操作的方法
2015/04/28 Python
浅谈Python中chr、unichr、ord字符函数之间的对比
2016/06/16 Python
python使用Matplotlib画条形图
2020/03/25 Python
Python中flatten( )函数及函数用法详解
2018/11/02 Python
python三大神器之fabric使用教程
2019/06/10 Python
Python3.8对可迭代解包的改进及用法详解
2019/10/15 Python
Python 中的 import 机制之实现远程导入模块
2019/10/29 Python
Pytorch实现将模型的所有参数的梯度清0
2020/06/24 Python
html5使用canvas实现图片下载功能的示例代码
2017/08/26 HTML / CSS
La Redoute英国官网:法国时尚品牌
2017/04/27 全球购物
贪睡宠物用品:Snoozer Pet Products
2020/02/04 全球购物
莫斯科珠宝厂官方网站:Miuz
2020/09/19 全球购物
物业管理公司实习生自我鉴定
2013/09/19 职场文书
工作失误检讨书范文大全
2014/01/13 职场文书
教师档案管理制度
2014/01/23 职场文书
创业大赛策划书
2014/03/01 职场文书
经济管理自荐书
2014/06/09 职场文书
陈安之励志演讲稿
2014/08/21 职场文书
补充协议书
2015/01/28 职场文书
酒店采购员岗位职责
2015/04/03 职场文书
小学生教师节广播稿
2015/08/19 职场文书
vue选项卡切换的实现案例
2022/04/11 Vue.js