python神经网络编程实现手写数字识别


Posted in Python onMay 27, 2020

本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下

import numpy
import scipy.special
#import matplotlib.pyplot
 
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
epochs=2
for e in range(epochs):
  for record in training_data_list:
    all_values=record.split(",")
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    targets=numpy.zeros(output_nodes)+0.01
    targets[int(all_values[0])]=0.99
    n.train(inputs,targets)
  
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  if(label==correct_lable):
    scorecard.append(1)
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

《python神经网络编程》中代码,仅做记录,以备后用。 

image_file_name=r"*.JPG"
img_array=scipy.misc.imread(image_file_name,flatten=True)
 
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01

图片对应像素的读取。因训练集灰度值与实际相反,故用255减取反。 

import numpy
import scipy.special
#import matplotlib.pyplot
import scipy.misc
from PIL import Image
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
 
#epochs=2
#for e in range(epochs):
for record in training_data_list:
  all_values=record.split(",")
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  targets=numpy.zeros(output_nodes)+0.01
  targets[int(all_values[0])]=0.99
  n.train(inputs,targets)
 
#image_file_name=r"C:\Users\lsy\Desktop\nn\1000-1.JPG"
'''
img_array=scipy.misc.imread(image_file_name,flatten=True)
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01
#inputs=(numpy.asfarray(image_data)/255.0*0.99)+0.01
outputs=n.query(image_data)
label=numpy.argmax(outputs)
print(label)
'''
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
 
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
total=[0,0,0,0,0,0,0,0,0,0]
rightsum=[0,0,0,0,0,0,0,0,0,0]
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  total[correct_lable]+=1
  if(label==correct_lable):
    scorecard.append(1)
    rightsum[correct_lable]+=1
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
print("")
print(total)
print(rightsum)
for i in range(10):
  print((rightsum[i]*1.0)/total[i])
 
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

尝试统计了对于各个数据测试数量及正确率。

python神经网络编程实现手写数字识别

原本想验证书后向后查询中数字‘9'识别模糊是因为训练数量不足或错误率过高而产生,然最终结果并不支持此猜想。

另书中只能针对特定像素的图片进行学习,真正手写的图片并不能满足训练条件,实际用处仍需今后有时间改进。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python sys.path详细介绍
Oct 17 Python
Python通过poll实现异步IO的方法
Jun 04 Python
python数据预处理之将类别数据转换为数值的方法
Jul 05 Python
Python中分支语句与循环语句实例详解
Sep 13 Python
python3+selenium实现qq邮箱登陆并发送邮件功能
Jan 23 Python
【python】matplotlib动态显示详解
Apr 11 Python
python实现月食效果实例代码
Jun 18 Python
Python递归函数 二分查找算法实现解析
Aug 12 Python
python机器学习包mlxtend的安装和配置详解
Aug 21 Python
Python超越函数积分运算以及绘图实现代码
Nov 20 Python
win10系统下python3安装及pip换源和使用教程
Jan 06 Python
解决Tensorflow占用GPU显存问题
Feb 03 Python
python安装和pycharm环境搭建设置方法
May 27 #Python
Python中无限循环需要什么条件
May 27 #Python
Python使用matplotlib绘制圆形代码实例
May 27 #Python
Python如何实现的二分查找算法
May 27 #Python
Python xml、字典、json、类四种数据类型如何实现互相转换
May 27 #Python
pycharm开发一个简单界面和通用mvc模板(操作方法图解)
May 27 #Python
Python列表如何更新值
May 27 #Python
You might like
php数组合并的二种方法
2014/03/21 PHP
记录一次排查PHP脚本执行卡住的问题
2016/12/27 PHP
PHP实现的无限分类类库定义与用法示例【基于thinkPHP】
2018/08/06 PHP
thinkphp集成前端脚手架Vue-cli的教程图解
2018/08/30 PHP
一个用javascript写的select支持上下键、首字母筛选以及回车取值的功能
2009/09/09 Javascript
jQuery中ajax的get()方法用法实例
2014/12/26 Javascript
JavaScript限定图片显示大小的方法
2015/03/11 Javascript
jquery实现弹出层效果实例
2015/05/19 Javascript
探讨JavaScript中的Rest参数和参数默认值
2015/07/29 Javascript
微信小程序 form组件详解
2016/10/25 Javascript
详解微信小程序 通过控制CSS实现view隐藏与显示
2017/05/24 Javascript
Vue实例中生命周期created和mounted的区别详解
2017/08/25 Javascript
bootstrap-Treeview实现级联勾选
2017/11/23 Javascript
vue项目实现记住密码到cookie功能示例(附源码)
2018/01/31 Javascript
vue项目中跳转到外部链接的实例讲解
2018/09/20 Javascript
js实现按钮开关单机下拉菜单效果
2018/11/22 Javascript
解决Vue+Electron下Vuex的Dispatch没有效果问题
2019/05/20 Javascript
element-ui表格合并span-method的实现方法
2019/05/21 Javascript
微信小程序 swiper 组件遇到的问题及解决方法
2019/05/26 Javascript
微信小程序事件流原理解析
2019/11/27 Javascript
深入解读VUE中的异步渲染的实现
2020/06/19 Javascript
解决vue+elementui项目打包后样式变化问题
2020/08/03 Javascript
python实现类似ftp传输文件的网络程序示例
2014/04/08 Python
使用Python的Scrapy框架十分钟爬取美女图
2016/12/26 Python
利用Python暴力破解zip文件口令的方法详解
2017/12/21 Python
Python基于mysql实现学生管理系统
2019/02/21 Python
python将字典列表导出为Excel文件的方法
2019/09/02 Python
Python高级特性之闭包与装饰器实例详解
2019/11/19 Python
Python短信轰炸的代码
2020/03/25 Python
分享8款纯CSS3实现的搜索框功能
2017/09/14 HTML / CSS
利用HTML5中Geolocation获取地理位置调用Google Map API在Google Map上定位
2013/01/23 HTML / CSS
中专毕业生自我鉴定范文
2013/11/09 职场文书
公务员培训心得体会
2013/12/28 职场文书
广告宣传策划方案
2014/05/21 职场文书
倡议书格式
2014/08/30 职场文书
职工的安全责任书范文!
2019/07/02 职场文书