python神经网络编程实现手写数字识别


Posted in Python onMay 27, 2020

本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下

import numpy
import scipy.special
#import matplotlib.pyplot
 
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
epochs=2
for e in range(epochs):
  for record in training_data_list:
    all_values=record.split(",")
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    targets=numpy.zeros(output_nodes)+0.01
    targets[int(all_values[0])]=0.99
    n.train(inputs,targets)
  
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  if(label==correct_lable):
    scorecard.append(1)
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

《python神经网络编程》中代码,仅做记录,以备后用。 

image_file_name=r"*.JPG"
img_array=scipy.misc.imread(image_file_name,flatten=True)
 
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01

图片对应像素的读取。因训练集灰度值与实际相反,故用255减取反。 

import numpy
import scipy.special
#import matplotlib.pyplot
import scipy.misc
from PIL import Image
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
 
#epochs=2
#for e in range(epochs):
for record in training_data_list:
  all_values=record.split(",")
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  targets=numpy.zeros(output_nodes)+0.01
  targets[int(all_values[0])]=0.99
  n.train(inputs,targets)
 
#image_file_name=r"C:\Users\lsy\Desktop\nn\1000-1.JPG"
'''
img_array=scipy.misc.imread(image_file_name,flatten=True)
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01
#inputs=(numpy.asfarray(image_data)/255.0*0.99)+0.01
outputs=n.query(image_data)
label=numpy.argmax(outputs)
print(label)
'''
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
 
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
total=[0,0,0,0,0,0,0,0,0,0]
rightsum=[0,0,0,0,0,0,0,0,0,0]
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  total[correct_lable]+=1
  if(label==correct_lable):
    scorecard.append(1)
    rightsum[correct_lable]+=1
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
print("")
print(total)
print(rightsum)
for i in range(10):
  print((rightsum[i]*1.0)/total[i])
 
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

尝试统计了对于各个数据测试数量及正确率。

python神经网络编程实现手写数字识别

原本想验证书后向后查询中数字‘9'识别模糊是因为训练数量不足或错误率过高而产生,然最终结果并不支持此猜想。

另书中只能针对特定像素的图片进行学习,真正手写的图片并不能满足训练条件,实际用处仍需今后有时间改进。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
wxPython实现窗口用图片做背景
Apr 25 Python
Python 加密与解密小结
Dec 06 Python
Django实现跨域请求过程详解
Jul 25 Python
PyQt5使用QTimer实现电子时钟
Jul 29 Python
Python @property使用方法解析
Sep 17 Python
python+opencv实现车牌定位功能(实例代码)
Dec 24 Python
使用OpenCV circle函数图像上画圆的示例代码
Dec 27 Python
如何基于Python实现自动扫雷
Jan 06 Python
tensorflow使用指定gpu的方法
Feb 04 Python
基于python判断字符串括号是否闭合{}[]()
Sep 21 Python
基于Python实现天天酷跑功能
Jan 06 Python
Python提取PDF指定内容并生成新文件
Jun 09 Python
python安装和pycharm环境搭建设置方法
May 27 #Python
Python中无限循环需要什么条件
May 27 #Python
Python使用matplotlib绘制圆形代码实例
May 27 #Python
Python如何实现的二分查找算法
May 27 #Python
Python xml、字典、json、类四种数据类型如何实现互相转换
May 27 #Python
pycharm开发一个简单界面和通用mvc模板(操作方法图解)
May 27 #Python
Python列表如何更新值
May 27 #Python
You might like
php FPDF类库应用实现代码
2009/03/20 PHP
PHP递归返回值时出现的问题解决办法
2013/02/19 PHP
运用jquery实现table单双行不同显示并能单行选中
2009/07/25 Javascript
JavaScript开发规范要求(规范化代码)
2010/08/16 Javascript
创建公共调用 jQuery Ajax 带返回值
2012/08/01 Javascript
Android中资源文件(非代码部分)的使用概览
2012/12/18 Javascript
拖动table标题实现改变td的大小(css+js代码)
2013/04/16 Javascript
jquery遍历数组与筛选数组的方法
2013/11/05 Javascript
Chrome扩展页面动态绑定JS事件提示错误
2014/02/11 Javascript
javascript使用正则表达式检测IP地址
2014/12/03 Javascript
node模块机制与异步处理详解
2016/03/13 Javascript
JavaScript比较两个数组的内容是否相同(推荐)
2017/05/02 Javascript
JavaScript中递归实现的方法及其区别
2017/09/12 Javascript
JS实现的ajax和同源策略(实例讲解)
2017/12/01 Javascript
Vue使用高德地图搭建实时公交应用功能(地图 + 附近站点+线路详情 + 输入提示+换乘详情)
2018/05/16 Javascript
electron-vue利用webpack打包实现多页面的入口文件问题
2019/05/12 Javascript
详解Vue 项目中的几个实用组件(ts)
2019/10/29 Javascript
python采用requests库模拟登录和抓取数据的简单示例
2014/07/05 Python
Web服务器框架 Tornado简介
2014/07/16 Python
Mac中Python 3环境下安装scrapy的方法教程
2017/10/26 Python
python3.4爬虫demo
2019/01/22 Python
python实现批量文件重命名
2019/10/31 Python
详解h5页面在不同ios设备上的问题总结
2019/03/01 HTML / CSS
alice McCALL官网:澳大利亚时尚品牌
2020/11/16 全球购物
库存图片、照片、矢量图、视频和音乐:Shutterstock
2021/02/12 全球购物
给幼儿园老师的表扬信
2014/01/19 职场文书
法人代表授权委托书
2014/04/08 职场文书
低碳日宣传活动总结
2014/07/09 职场文书
统计员岗位职责
2015/02/11 职场文书
2015年手术室工作总结
2015/05/11 职场文书
民事诉讼代理词
2015/05/25 职场文书
小学家长意见怎么写
2015/06/03 职场文书
大学副班长竞选稿
2015/11/21 职场文书
实体类或对象序列化时,忽略为空属性的操作
2021/06/30 Java/Android
微软团队与 NASA 科学家和惠普企业(HPE)的工程师合作
2022/04/21 数码科技
Oracle查看表空间使用率以及爆满解决方案详解
2022/07/23 Oracle