python神经网络编程实现手写数字识别


Posted in Python onMay 27, 2020

本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下

import numpy
import scipy.special
#import matplotlib.pyplot
 
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
epochs=2
for e in range(epochs):
  for record in training_data_list:
    all_values=record.split(",")
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    targets=numpy.zeros(output_nodes)+0.01
    targets[int(all_values[0])]=0.99
    n.train(inputs,targets)
  
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  if(label==correct_lable):
    scorecard.append(1)
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

《python神经网络编程》中代码,仅做记录,以备后用。 

image_file_name=r"*.JPG"
img_array=scipy.misc.imread(image_file_name,flatten=True)
 
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01

图片对应像素的读取。因训练集灰度值与实际相反,故用255减取反。 

import numpy
import scipy.special
#import matplotlib.pyplot
import scipy.misc
from PIL import Image
class neuralNetwork:
  def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
    self.inodes=inputnodes
    self.hnodes=hiddennodes
    self.onodes=outputnodes
    
    self.lr=learningrate
  
    self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
    
    self.activation_function=lambda x: scipy.special.expit(x)
    pass
  
  def train(self,inputs_list,targets_list):
    inputs=numpy.array(inputs_list,ndmin=2).T
    targets=numpy.array(targets_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    output_errors=targets-final_outputs
    hidden_errors=numpy.dot(self.who.T,output_errors)
    
    self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
    self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
    pass
  
  def query(self,input_list):
    inputs=numpy.array(input_list,ndmin=2).T
    
    hidden_inputs=numpy.dot(self.wih,inputs)
    hidden_outputs=self.activation_function(hidden_inputs)
    
    final_inputs=numpy.dot(self.who,hidden_outputs)
    final_outputs=self.activation_function(final_inputs)
    
    return final_outputs
 
 
input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
 
training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
 
#epochs=2
#for e in range(epochs):
for record in training_data_list:
  all_values=record.split(",")
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  targets=numpy.zeros(output_nodes)+0.01
  targets[int(all_values[0])]=0.99
  n.train(inputs,targets)
 
#image_file_name=r"C:\Users\lsy\Desktop\nn\1000-1.JPG"
'''
img_array=scipy.misc.imread(image_file_name,flatten=True)
img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01
#inputs=(numpy.asfarray(image_data)/255.0*0.99)+0.01
outputs=n.query(image_data)
label=numpy.argmax(outputs)
print(label)
'''
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#  print(i)
 
test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
 
test_data_list=test_data_file.readlines()
test_data_file.close()
 
scorecard=[]
 
total=[0,0,0,0,0,0,0,0,0,0]
rightsum=[0,0,0,0,0,0,0,0,0,0]
 
for record in test_data_list:
  all_values=record.split(",")
  correct_lable=int(all_values[0])
  inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
  outputs=n.query(inputs)
  label=numpy.argmax(outputs)
  total[correct_lable]+=1
  if(label==correct_lable):
    scorecard.append(1)
    rightsum[correct_lable]+=1
  else:
    scorecard.append(0)
 
scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
print("")
print(total)
print(rightsum)
for i in range(10):
  print((rightsum[i]*1.0)/total[i])
 
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])
 
#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))
 
#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#  print(i)

尝试统计了对于各个数据测试数量及正确率。

python神经网络编程实现手写数字识别

原本想验证书后向后查询中数字‘9'识别模糊是因为训练数量不足或错误率过高而产生,然最终结果并不支持此猜想。

另书中只能针对特定像素的图片进行学习,真正手写的图片并不能满足训练条件,实际用处仍需今后有时间改进。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python学习笔记--将python源文件打包成exe文件(pyinstaller)
May 26 Python
TensorFlow利用saver保存和提取参数的实例
Jul 26 Python
详解python持久化文件读写
Apr 06 Python
Python简单基础小程序的实例代码
Apr 28 Python
python字符串分割及字符串的一些常规方法
Jul 24 Python
Python3.7黑帽编程之病毒篇(基础篇)
Feb 04 Python
Python响应对象text属性乱码解决方案
Mar 31 Python
Python pytesseract验证码识别库用法解析
Jun 29 Python
python3.6中anaconda安装sklearn踩坑实录
Jul 28 Python
python 提高开发效率的5个小技巧
Oct 19 Python
python解压zip包中文乱码解决方法
Nov 27 Python
pandas取dataframe特定行列的实现方法
May 24 Python
python安装和pycharm环境搭建设置方法
May 27 #Python
Python中无限循环需要什么条件
May 27 #Python
Python使用matplotlib绘制圆形代码实例
May 27 #Python
Python如何实现的二分查找算法
May 27 #Python
Python xml、字典、json、类四种数据类型如何实现互相转换
May 27 #Python
pycharm开发一个简单界面和通用mvc模板(操作方法图解)
May 27 #Python
Python列表如何更新值
May 27 #Python
You might like
ecshop 订单确认中显示省市地址信息的方法
2010/03/15 PHP
php根据操作系统转换文件名大小写的方法
2014/02/24 PHP
修改destoon会员公司的伪静态中的com目录的方法
2014/08/21 PHP
PHP编程计算文件或数组中单词出现频率的方法
2017/05/22 PHP
javascript中的location用法简单介绍
2007/03/07 Javascript
js 模拟实现类似c#下的hashtable的简单功能代码
2010/01/24 Javascript
javascript中callee与caller的用法和应用场景
2010/12/08 Javascript
JQuyer $.post 与 $.ajax 访问WCF ajax service 时的问题需要注意的地方
2011/09/20 Javascript
JavaScript 垃圾回收机制分析
2013/10/10 Javascript
Javascript 鼠标移动上去 滑块跟随效果代码分享
2013/11/23 Javascript
使用jQuery不判断浏览器高度解决iframe自适应高度问题
2014/12/16 Javascript
javascript实现的多个层切换效果通用函数实例
2015/07/06 Javascript
基于javascript实现动态显示当前系统时间
2016/01/28 Javascript
微信小程序联网请求的轮播图
2017/07/07 Javascript
get  post jsonp三种数据交互形式实例详解
2017/08/25 Javascript
用JavaScript做简易的购物车的代码示例
2017/10/20 Javascript
layui 点击重置按钮, select 并没有被重置的解决方法
2019/09/03 Javascript
Vue通过配置WebSocket并实现群聊功能
2019/12/31 Javascript
js实现头像上传并且可预览提交
2020/12/25 Javascript
python获取Linux下文件版本信息、公司名和产品名的方法
2014/10/05 Python
Python3中常用的处理时间和实现定时任务的方法的介绍
2015/04/07 Python
Python中使用haystack实现django全文检索搜索引擎功能
2017/08/26 Python
使用C++扩展Python的功能详解
2018/01/12 Python
python实现批量解析邮件并下载附件
2018/06/19 Python
Django模板语言 Tags使用详解
2019/09/09 Python
django框架创建应用操作示例
2019/09/26 Python
python解析命令行参数的三种方法详解
2019/11/29 Python
简单了解python元组tuple相关原理
2019/12/02 Python
Python3 实现减少可调用对象的参数个数
2019/12/20 Python
浅谈Python中os模块及shutil模块的常规操作
2020/04/03 Python
HTML5+CSS3应用详解
2014/02/24 HTML / CSS
大学四年个人自我小结
2014/03/05 职场文书
超市优秀员工事迹材料
2014/05/01 职场文书
村主任个人对照检查材料
2014/10/01 职场文书
小学信息技术教学反思
2016/02/16 职场文书
Python 线程池模块之多线程操作代码
2021/05/20 Python