在Tensorflow中实现梯度下降法更新参数值


Posted in Python onJanuary 23, 2020

我就废话不多说了,直接上代码吧!

tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))

为Variable的参数。

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])

也可以使用var_list参数来定义更新那些参数的值

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果如下

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9163
 
Process finished with exit code 0

如果限制,只更新参数W查看效果

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9187
 
Process finished with exit code 0

可以看出只修改W对结果影响不大,如果设置只修改b

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b])
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果:

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.1135
 
Process finished with exit code 0

如果只更新b那么对效果影响很大。

以上这篇在Tensorflow中实现梯度下降法更新参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python求解最大公约数的实现方法
Aug 20 Python
Python中set与frozenset方法和区别详解
May 23 Python
python 专题九 Mysql数据库编程基础知识
Mar 16 Python
python把ipynb文件转换成pdf文件过程详解
Jul 09 Python
Python中pymysql 模块的使用详解
Aug 12 Python
Win10 安装PyCharm2019.1.1(图文教程)
Sep 29 Python
jupyter notebook插入本地图片的实现
Apr 13 Python
python:解析requests返回的response(json格式)说明
Apr 30 Python
基于PyQT实现区分左键双击和单击
May 19 Python
python 实现倒计时功能(gui界面)
Nov 11 Python
Django restful framework生成API文档过程详解
Nov 12 Python
matplotlib交互式数据光标mpldatacursor的实现
Feb 03 Python
Tensorflow实现部分参数梯度更新操作
Jan 23 #Python
将tensorflow模型打包成PB文件及PB文件读取方式
Jan 23 #Python
使用tensorflow显示pb模型的所有网络结点方式
Jan 23 #Python
tensorflow 实现打印pb模型的所有节点
Jan 23 #Python
TensorFlow命名空间和TensorBoard图节点实例
Jan 23 #Python
tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式
Jan 23 #Python
如何定义TensorFlow输入节点
Jan 23 #Python
You might like
PHP中10个不常见却非常有用的函数
2010/03/21 PHP
关于PHP二进制流 逐bit的低位在前算法(详解)
2013/06/13 PHP
WampServer搭建php环境时遇到的问题汇总
2015/07/23 PHP
Firefox outerHTML实现代码
2009/06/04 Javascript
JavaScript DOM学习第八章 表单错误提示
2010/02/19 Javascript
JavaScript中的isXX系列是否继续使用的分析
2011/04/16 Javascript
重写javascript中window.confirm的行为
2012/10/21 Javascript
关于JavaScript的面向对象和继承有利新手学习
2013/01/11 Javascript
javascript数组快速打乱重排的方法
2014/01/02 Javascript
用jquery.sortElements实现table排序
2014/05/04 Javascript
JavaScript实现图片自动加载的瀑布流效果
2016/04/11 Javascript
详解Node.js如何开发命令行工具
2016/08/14 Javascript
JS实现给对象动态添加属性的方法
2017/01/05 Javascript
JavaScript数据结构与算法之队列原理与用法实例详解
2017/11/22 Javascript
JS实现带导航城市列表以及输入搜索功能
2018/01/04 Javascript
JS实现的文字间歇循环滚动效果完整示例
2018/02/13 Javascript
vue页面离开后执行函数的实例
2018/03/13 Javascript
微信小程序 wxParse插件显示视频问题
2019/09/27 Javascript
Element Alert警告的具体使用方法
2020/07/27 Javascript
[10:18]2018DOTA2国际邀请赛寻真——找回自信的TNCPredator
2018/08/13 DOTA
python爬虫租房信息在地图上显示的方法
2019/05/13 Python
Python函数的返回值、匿名函数lambda、filter函数、map函数、reduce函数用法实例分析
2019/12/26 Python
Python使用Pandas库常见操作详解
2020/01/16 Python
Python使用Paramiko控制liunx第三方库
2020/05/20 Python
python删除某个目录文件夹的方法
2020/05/26 Python
sklearn线性逻辑回归和非线性逻辑回归的实现
2020/06/09 Python
伦敦高级内衣品牌:Agent Provocateur(大内密探)
2016/08/23 全球购物
阿姆斯特丹杜莎夫人蜡像馆官方网站:Madame Tussauds Amsterdam
2019/03/12 全球购物
SHEIN台湾:购买最新流行女装服饰
2019/05/18 全球购物
测绘工程专业个人自我评价
2013/12/01 职场文书
老师对学生的评语
2014/04/18 职场文书
机械专业应届毕业生自荐书
2014/06/12 职场文书
预防艾滋病宣传标语
2014/06/25 职场文书
关心下一代工作先进事迹
2014/08/15 职场文书
解除处分决定书
2015/06/25 职场文书
vue实现可拖拽的dialog弹框
2021/05/13 Vue.js