在Tensorflow中实现梯度下降法更新参数值


Posted in Python onJanuary 23, 2020

我就废话不多说了,直接上代码吧!

tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))

为Variable的参数。

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])

也可以使用var_list参数来定义更新那些参数的值

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果如下

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9163
 
Process finished with exit code 0

如果限制,只更新参数W查看效果

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9187
 
Process finished with exit code 0

可以看出只修改W对结果影响不大,如果设置只修改b

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b])
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果:

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.1135
 
Process finished with exit code 0

如果只更新b那么对效果影响很大。

以上这篇在Tensorflow中实现梯度下降法更新参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python应用程序在windows下不出现cmd窗口的办法
May 29 Python
在Lighttpd服务器中运行Django应用的方法
Jul 22 Python
Python逐行读取文件中内容的简单方法
Feb 26 Python
Pandas的read_csv函数参数分析详解
Jul 02 Python
Python对接 xray 和微信实现自动告警
Sep 17 Python
Python谱减法语音降噪实例
Dec 18 Python
解决python 读取 log日志的编码问题
Dec 24 Python
Python2 与Python3的版本区别实例分析
Mar 30 Python
Python3实现打印任意宽度的菱形代码
Apr 12 Python
python time()的实例用法
Nov 03 Python
浅谈Python基础之列表那些事儿
May 11 Python
python标准库ElementTree处理xml
May 20 Python
Tensorflow实现部分参数梯度更新操作
Jan 23 #Python
将tensorflow模型打包成PB文件及PB文件读取方式
Jan 23 #Python
使用tensorflow显示pb模型的所有网络结点方式
Jan 23 #Python
tensorflow 实现打印pb模型的所有节点
Jan 23 #Python
TensorFlow命名空间和TensorBoard图节点实例
Jan 23 #Python
tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式
Jan 23 #Python
如何定义TensorFlow输入节点
Jan 23 #Python
You might like
php实现模拟post请求用法实例
2015/07/11 PHP
PHP对称加密算法(DES/AES)类的实现代码
2017/11/14 PHP
PHP实现可添加水印与生成缩略图的图片处理工具类
2018/01/16 PHP
PHP使用zlib扩展实现GZIP压缩输出的方法详解
2018/04/09 PHP
用js判断浏览器是否是IE的比较好的办法
2007/05/08 Javascript
js实现鼠标划过给div加透明度的方法
2015/05/25 Javascript
asp知识整理笔记3(问答模式)
2015/09/27 Javascript
JavaScript 浏览器兼容性总结及常用浏览器兼容性分析
2016/03/30 Javascript
字符串反转_JavaScript
2016/04/28 Javascript
Ionic + Angular.js实现验证码倒计时功能的方法
2017/06/12 Javascript
vue 2.0 购物车小球抛物线的示例代码
2018/02/01 Javascript
Makefile/cmake/node-gyp中区分判断不同平台的方法
2018/12/18 Javascript
JavaScript模板引擎原理与用法详解
2018/12/24 Javascript
JavaScript实现小球沿正弦曲线运动
2020/09/07 Javascript
vue实现手机端省市区区域选择
2019/09/27 Javascript
Postman动态获取返回值过程详解
2020/06/30 Javascript
Python字符串和文件操作常用函数分析
2015/04/08 Python
详解Python之数据序列化(json、pickle、shelve)
2017/03/30 Python
Python实现基于POS算法的区块链
2018/08/07 Python
Python Series从0开始索引的方法
2018/11/06 Python
pandas去重复行并分类汇总的实现方法
2019/01/29 Python
浅谈Python_Openpyxl使用(最全总结)
2019/09/05 Python
Python-Flask:动态创建表的示例详解
2019/11/22 Python
Pycharm小白级简单使用教程
2020/01/08 Python
python向xls写入数据(包括合并,边框,对齐,列宽)
2021/02/02 Python
python中使用asyncio实现异步IO实例分析
2021/02/26 Python
Application Cache未缓存文件无法访问无法加载问题
2014/05/31 HTML / CSS
UGG澳洲官网:UGG Australia
2018/04/26 全球购物
维也纳通行证:Vienna PASS
2019/07/18 全球购物
如何手工释放资源
2013/12/15 面试题
css animation配合SVG制作能量流动效果
2021/03/24 HTML / CSS
幼儿园教师节活动方案
2014/02/02 职场文书
乡党委干部党的群众路线教育实践活动个人对照检查材料思想汇报
2014/10/01 职场文书
婚礼答谢词
2015/01/04 职场文书
学校教师培训工作总结
2015/10/14 职场文书
关于感恩老师的古诗句
2019/08/20 职场文书