一篇文章彻底搞懂Python中可迭代(Iterable)、迭代器(Iterator)与生成器(Generator)的概念


Posted in Python onMay 13, 2019

前言

在Python中可迭代(Iterable)、迭代器(Iterator)和生成器(Generator)这几个概念是经常用到的,初学时对这几个概念也是经常混淆,现在是时候把这几个概念搞清楚了。

0x00 可迭代(Iterable)

简单的说,一个对象(在Python里面一切都是对象)只要实现了只要实现了__iter__()方法,那么用isinstance()函数检查就是Iterable对象;

例如

class IterObj:
 
 def __iter__(self):
  # 这里简单地返回自身
  # 但实际情况可能不会这么写
  # 而是通过内置的可迭代对象来实现
  # 下文的列子中将会展示
  return self

上面定义了一个类IterObj并实现了__iter__()方法,这个就是一个可迭代(Iterable)对象

it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # false
 print(isinstance(it, Generator)) # false

记住这个类,下文我们还会看到这个类的定义。

常见的可迭代对象

在Python中有哪些常见的可迭代对象呢?

  • 集合或序列类型(如list、tuple、set、dict、str)
  • 文件对象
  • 在类中定义了__iter__()方法的对象,可以被认为是 Iterable对象,但自定义的可迭代对象要能在for循环中正确使用,就需要保证__iter__()实现必须是正确的(即可以通过内置iter()函数转成Iterator对象。关于Iterator下文还会说明,这里留下一个坑,只是记住iter()函数是能够将一个可迭代对象转成迭代器对象,然后在for中使用)
  • 在类中实现了如果只实现__getitem__()的对象可以通过iter()函数转化成迭代器但其本身不是可迭代对象。所以当一个对象能够在for循环中运行,但不一定是Iterable对象。

关于第1、2点我们可以通过以下来验证

print(isinstance([], Iterable)) # true list 是可迭代的
 print(isinstance({}, Iterable)) # true 字典是可迭代的
 print(isinstance((), Iterable)) # true 元组是可迭代的
 print(isinstance(set(), Iterable)) # true set是可迭代的
 print(isinstance('', Iterable)) # true 字符串是可迭代的
 
 currPath = os.path.dirname(os.path.abspath(__file__))
 with open(currPath+'/model.py') as file:
  print(isinstance(file, Iterable)) # true

我们再来看第3点,

print(hasattr([], "__iter__")) # true
 print(hasattr({}, "__iter__")) # true
 print(hasattr((), "__iter__")) # true
 print(hasattr('', "__iter__")) # true

这些内置集合或序列对象都有__iter__属性,即他们都实现了同名方法。但这个可迭代对象要在for循环中被使用,那么它就应该能够被内置的iter()函数调用并转化成Iterator对象。

例如,我们看内置的可迭代对象

print(iter([])) # <list_iterator object at 0x110243f28>
 print(iter({})) # <dict_keyiterator object at 0x110234408>
 print(iter(())) # <tuple_iterator object at 0x110243f28>
 print(iter('')) # <str_iterator object at 0x110243f28>

它们都相应的转成了对应的迭代器(Iterator)对象。

现在回过头再看看一开始定义的那个IterObj类

class IterObj:
 
 def __iter__(self):
  return self 
  
it = IterObj()
print(iter(it))

我们使用了iter()函数,这时候将再控制台上打印出以下信息:

Traceback (most recent call last):
  File "/Users/mac/PycharmProjects/iterable_iterator_generator.py", line 71, in <module>
    print(iter(it))
TypeError: iter() returned non-iterator of type 'IterObj'

出现了类型错误,意思是iter()函数不能将‘非迭代器'类型转成迭代器。

那如何才能将一个可迭代(Iterable)对象转成迭代器(Iterator)对象呢?

我们修改一下IterObj类的定义

class IterObj:

 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]

 def __iter__(self):
  return iter(self.a)

我们在构造方法中定义了一个名为a的列表,然后还实现了__iter__()方法。

修改后的类是可以被iter()函数调用的,即也可以在for循环中使用

it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # false
 print(isinstance(it, Generator)) # false
 print(iter(it)) # <list_iterator object at 0x102007278>
 for i in it:
  print(i) # 将打印3、5、7、11、13、17、19元素

因此在定义一个可迭代对象时,我们要非常注意__iter__()方法的内部实现逻辑,一般情况下,是通过一些已知的可迭代对象(例如,上文提到的集合、序列、文件等或其他正确定义的可迭代对象)来辅助我们来实现

关于第4点说明的意思是iter()函数可以将一个实现了__getitem__()方法的对象转成迭代器对象,也可以在for循环中使用,但是如果用isinstance()方法来检测时,它不是一个可迭代对象。

class IterObj:
 
 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]
 
 def __getitem__(self, i):
  return self.a[i]
  
it = IterObj()
print(isinstance(it, Iterable)) # false
print(isinstance(it, Iterator)) # false
print(isinstance(it, Generator)) false
print(hasattr(it, "__iter__")) # false
print(iter(it)) # <iterator object at 0x10b231278>

for i in it:
 print(i) # 将打印出3、5、7、11、13、17、19

这个例子说明了可以在for中使用的对象,不一定是可迭代对象。

现在我们做个小结:

  • 一个可迭代的对象是实现了__iter__()方法的对象
  • 它要在for循环中使用,就必须满足iter()的调用(即调用这个函数不会出错,能够正确转成一个Iterator对象)
  • 可以通过已知的可迭代对象来辅助实现我们自定义的可迭代对象。
  • 一个对象实现了__getitem__()方法可以通过iter()函数转成Iterator,即可以在for循环中使用,但它不是一个可迭代对象(可用isinstance方法检测())

0x01 迭代器(Iterator)

上文很多地方都提到了Iterator,现在我们把这个坑填上。

当我们对可迭代的概念了解后,对于迭代器就比较好理解了。

一个对象实现了__iter__()和__next__()方法,那么它就是一个迭代器对象。 例如

class IterObj:

 def __init__(self):
  self.a = [3, 5, 7, 11, 13, 17, 19]

  self.n = len(self.a)
  self.i = 0

 def __iter__(self):
  return iter(self.a)

 def __next__(self):
  while self.i < self.n:
   v = self.a[self.i]
   self.i += 1
   return v
  else:
   self.i = 0
   raise StopIteration()

在IterObj中,构造函数中定义了一个列表a,列表长度n,索引i。

it = IterObj()
 print(isinstance(it, Iterable)) # true
 print(isinstance(it, Iterator)) # true
 print(isinstance(it, Generator)) # false
 print(hasattr(it, "__iter__")) # true
 print(hasattr(it, "__next__")) # true

我们可以发现上文提到的

集合和序列对象是可迭代的但不是迭代器

print(isinstance([], Iterator)) # false
 print(isinstance({}, Iterator)) # false
 print(isinstance((), Iterator)) # false
 print(isinstance(set(), Iterator)) # false
 print(isinstance('', Iterator)) # false

而文件对象是迭代器

currPath = os.path.dirname(os.path.abspath(__file__))
 with open(currPath+'/model.py') as file:
  print(isinstance(file, Iterator)) # true

一个迭代器(Iterator)对象不仅可以在for循环中使用,还可以通过内置函数next()函数进行调用。 例如

it = IterObj()
next(it) # 3
next(it) # 5

0x02 生成器(Generator)

现在我们来看看什么是生成器?

一个生成器既是可迭代的也是迭代器

定义生成器有两种方式:

  • 列表生成器
  • 使用yield定义生成器函数

先看第1种情况

g = (x * 2 for x in range(10)) # 0~18的偶数生成器 
 print(isinstance(g, Iterable)) # true
 print(isinstance(g, Iterator)) # true
 print(isinstance(g, Generator)) # true
 print(hasattr(g, "__iter__")) # true
 print(hasattr(g, "__next__")) # true
 print(next(g)) # 0
 print(next(g)) # 2

列表生成器可以不需要消耗大量的内存来生成一个巨大的列表,只有在需要数据的时候才会进行计算。

再看第2种情况

def gen():
 for i in range(10):
  yield i

这里yield的作用就相当于return,这个函数就是顺序地返回[0,10)的之间的自然数,可以通过next()或使用for循环来遍历。

当程序遇到yield关键字时,这个生成器函数就返回了,直到再次执行了next()函数,它就会从上次函数返回的执行点继续执行,即yield退出时保存了函数执行的位置、变量等信息,再次执行时,就从这个yield退出的地方继续往下执行。

在Python中利用生成器的这些特点可以实现协程。协程可以理解为一个轻量级的线程,它相对于线程处理高并发场景有很多优势。

看下面一个用协程实现的生产者-消费者模型

def producer(c):
 n = 0
 while n < 5:
  n += 1
  print('producer {}'.format(n))
  r = c.send(n)
  print('consumer return {}'.format(r))


def consumer():
 r = ''
 while True:
  n = yield r
  if not n:
   return
  print('consumer {} '.format(n))
  r = 'ok'


if __name__ == '__main__':
 c = consumer()
 next(c) # 启动consumer
 producer(c)

这段代码执行效果如下

producer 1
consumer 1
producer return ok
producer 2
consumer 2
producer return ok
producer 3
consumer 3
producer return ok

协程实现了CPU在两个函数之间进行切换从而实现并发的效果。

0x04 引用

docs.python.org/3.7/

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python语言技巧之三元运算符使用介绍
Mar 04 Python
python插入排序算法的实现代码
Nov 21 Python
python写入xml文件的方法
May 08 Python
python3.6+opencv3.4实现鼠标交互查看图片像素
Feb 26 Python
tensorflow 输出权重到csv或txt的实例
Jun 14 Python
python config文件的读写操作示例
Sep 27 Python
Python-opencv 双线性插值实例
Jan 17 Python
使用python处理题库表格并转化为word形式的实现
Apr 14 Python
彻底解决Python包下载慢问题
Nov 15 Python
如何用Python徒手写线性回归
Jan 25 Python
Python利器openpyxl之操作excel表格
Apr 17 Python
Python 多线程处理任务实例
Nov 07 Python
为什么你还不懂得怎么使用Python协程
May 13 #Python
Python玩转加密的技巧【推荐】
May 13 #Python
11个Python3字典内置方法大全与示例汇总
May 13 #Python
python中的数据结构比较
May 13 #Python
Python中函数的基本定义与调用及内置函数详解
May 13 #Python
python实现弹跳小球
May 13 #Python
Python开发之Nginx+uWSGI+virtualenv多项目部署教程
May 13 #Python
You might like
php错误级别的设置方法
2013/06/17 PHP
Zend Framework过滤器Zend_Filter用法详解
2016/12/09 PHP
Laravel-添加后台模板AdminLte的实现方法
2019/10/08 PHP
Laravel (Lumen) 解决JWT-Auth刷新token的问题
2019/10/24 PHP
面向对象Javascript核心支持代码分享
2012/05/23 Javascript
等待指定时间后自动跳转或关闭当前页面的js代码
2013/07/09 Javascript
js用拖动滑块来控制图片大小的方法
2015/02/27 Javascript
js实现touch移动触屏滑动事件
2015/04/17 Javascript
JQuery页面地址处理插件jqURL详解
2015/05/03 Javascript
基于css3新属性transform及原生js实现鼠标拖动3d立方体旋转
2016/06/12 Javascript
Angular在一个页面中使用两个ng-app的方法(二)
2017/02/20 Javascript
ReactNative页面跳转Navigator实现的示例代码
2017/08/02 Javascript
微信小程序promsie.all和promise顺序执行
2017/10/27 Javascript
ReactNative之FlatList的具体使用方法
2017/11/29 Javascript
总结javascript三元运算符知识点
2018/09/28 Javascript
javascript设计模式 ? 职责链模式原理与用法实例分析
2020/04/16 Javascript
APIStar:一个专为Python3设计的API框架
2018/09/26 Python
在python中pandas读文件,有中文字符的方法
2018/12/12 Python
Python数据类型之Number数字操作实例详解
2019/05/08 Python
python-tornado的接口用swagger进行包装的实例
2019/08/29 Python
python快速排序的实现及运行时间比较
2019/11/22 Python
解决pycharm不能自动补全第三方库的函数和属性问题
2020/03/12 Python
python爬虫scrapy基于CrawlSpider类的全站数据爬取示例解析
2021/02/20 Python
html5 datalist 选中option选项后的触发事件
2020/03/05 HTML / CSS
世界最大的海报和艺术印刷商店:AllPosters.com
2017/02/01 全球购物
亚洲最大的眼镜批发商和零售商之一:Glasseslit
2018/10/08 全球购物
软件测试笔试题
2012/10/25 面试题
大学生最常用的自我评价
2013/12/07 职场文书
客服部工作职责范本
2014/02/14 职场文书
产品生产计划书
2014/05/07 职场文书
自我工作评价范文
2015/03/06 职场文书
干部考核工作总结
2015/08/12 职场文书
python爬不同图片分别保存在不同文件夹中的实现
2021/04/02 Python
Python pandas求方差和标准差的方法实例
2021/08/04 Python
Redis 操作多个数据库的配置的方法实现
2022/03/23 Redis
Python PIL按比例裁剪图片
2022/05/11 Python