Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
Python yield使用方法示例
Dec 04 Python
快速排序的算法思想及Python版快速排序的实现示例
Jul 02 Python
Python中pow()和math.pow()函数用法示例
Feb 11 Python
python爬虫基础教程:requests库(二)代码实例
Apr 09 Python
python实现Excel文件转换为TXT文件
Apr 28 Python
python不使用for计算两组、多个矩形两两间的iou方式
Jan 18 Python
Django调用支付宝接口代码实例详解
Apr 04 Python
在主流系统之上安装Pygame的方法
May 20 Python
python 实现简单的计算器(gui界面)
Nov 11 Python
Python 里最强的地图绘制神器
Mar 01 Python
django注册用邮箱发送验证码的实现
Apr 18 Python
pytorch 两个GPU同时训练的解决方案
Jun 01 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php实现的用户查询类实例
2015/06/18 PHP
载入进度条 效果
2006/07/08 Javascript
js判断浏览器的比较全的代码
2007/02/13 Javascript
JQuery,Extjs,YUI,Prototype,Dojo 等JS框架的区别和应用场景简述
2010/04/15 Javascript
基于jQuery的message插件实现右下角弹出消息框
2011/01/11 Javascript
JS格式化数字金额用逗号隔开保留两位小数
2013/10/18 Javascript
js读写json文件实例代码
2014/10/21 Javascript
js日期范围初始化得到前一个月日期的方法
2015/05/05 Javascript
JavaScript中的some()方法使用详解
2015/06/09 Javascript
JS创建对象几种不同方法详解
2016/03/01 Javascript
Three.js学习之网格
2016/08/10 Javascript
Angular2 (RC5) 路由与导航详解
2016/09/21 Javascript
Javascript vue.js表格分页,ajax异步加载数据
2016/10/24 Javascript
JavaScript实现的斑马线表格效果【隔行变色】
2017/09/18 Javascript
NodeJS如何实现同步的方法示例
2018/08/24 NodeJs
微信小程序解除10个请求并发限制
2018/12/18 Javascript
Python实现字符串匹配算法代码示例
2017/12/05 Python
Python设计模式之命令模式简单示例
2018/01/10 Python
python实现多线程网页下载器
2018/04/15 Python
Django中使用Whoosh进行全文检索的方法
2019/03/31 Python
详解python中的数据类型和控制流
2019/08/08 Python
Python坐标轴操作及设置代码实例
2020/06/04 Python
python判断变量是否为列表的方法
2020/09/17 Python
如何Tkinter模块编写Python图形界面
2020/10/14 Python
python 对象真假值的实例(哪些视为False)
2020/12/11 Python
利用CSS3实现开门效果实例源码
2016/08/22 HTML / CSS
加拿大便宜的隐形眼镜商店:Clearly
2016/09/15 全球购物
Myprotein西班牙官网:欧洲第一大运动营养品牌
2020/02/24 全球购物
正风肃纪剖析材料
2014/02/18 职场文书
房屋买卖委托公证书
2014/04/08 职场文书
技能比武方案
2014/05/21 职场文书
庆国庆活动总结
2014/08/28 职场文书
2014年学校体育工作总结
2014/12/08 职场文书
初中信息技术教学计划
2015/01/22 职场文书
城管个人总结
2015/02/28 职场文书
浅谈Vue的computed计算属性
2022/03/21 Vue.js