Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
python创建和删除目录的方法
Apr 29 Python
Django查找网站项目根目录和对正则表达式的支持
Jul 15 Python
Python 实现 贪吃蛇大作战 代码分享
Sep 07 Python
利用Tkinter(python3.6)实现一个简单计算器
Dec 21 Python
更改Python的pip install 默认安装依赖路径方法详解
Oct 27 Python
Python实现的各种常见分布算法示例
Dec 13 Python
python用fsolve、leastsq对非线性方程组求解
Dec 15 Python
Python实现的调用C语言函数功能简单实例
Mar 13 Python
详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)
Mar 27 Python
django model object序列化实例
Mar 13 Python
如何利用Python写个坦克大战
Nov 18 Python
Django集成MongoDB实现过程解析
Dec 01 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php上传文件中文文件名乱码的解决方法
2013/11/01 PHP
ThinkPHP实现动态包含文件的方法
2014/11/29 PHP
php通过正则表达式记取数据来读取xml的方法
2015/03/09 PHP
php自定义函数实现JS的escape的方法示例
2016/07/07 PHP
javascript错误的认识不用关心内存管理
2012/12/15 Javascript
捕获键盘事件(且兼容各浏览器)
2013/07/03 Javascript
jquery实现树形二级菜单实例代码
2013/11/20 Javascript
用box固定长宽实现图片自动轮播js代码
2014/06/09 Javascript
jQuery网页右侧广告跟随滚动代码分享
2020/04/20 Javascript
微信小程序 实例应用(记账)详解
2016/09/28 Javascript
jQuery简易时光轴实现方法示例
2017/03/13 Javascript
ES6中的rest参数与扩展运算符详解
2017/07/18 Javascript
基于JavaScript实现抽奖系统
2018/01/16 Javascript
vuex state及mapState的基础用法详解
2018/04/19 Javascript
vue中img src 动态加载本地json的图片路径写法
2019/04/25 Javascript
详解小程序退出页面时清除定时器
2019/04/28 Javascript
react koa rematch 如何打造一套服务端渲染架子
2019/06/26 Javascript
微信小程序实现滑动翻页效果(完整代码)
2019/12/06 Javascript
python基础入门详解(文件输入/输出 内建类型 字典操作使用方法)
2013/12/08 Python
使用Python写一个小游戏
2018/04/02 Python
Python实现DDos攻击实例详解
2019/02/02 Python
Python实现队列的方法示例小结【数组,链表】
2020/02/22 Python
python中封包建立过程实例
2021/02/18 Python
澳大利亚制造的蜡烛和扩散器:Glasshouse Fragrances
2018/05/20 全球购物
美国领先的家庭健康检测试剂盒提供商:LetsGetChecked
2019/03/18 全球购物
迪卡侬印尼体育用品商店:Decathlon印尼
2020/03/11 全球购物
市场营销工作计划书
2014/05/06 职场文书
五水共治一句话承诺
2014/05/30 职场文书
法学专业大学生实习自我鉴定
2014/10/05 职场文书
2014年学校办公室工作总结
2014/12/19 职场文书
先进个人事迹材料范文
2014/12/30 职场文书
部队个人年终总结
2015/03/02 职场文书
2015年化验员工作总结
2015/04/10 职场文书
医者仁心观后感
2015/06/17 职场文书
毕业生入职感言
2015/07/31 职场文书
Python可变与不可变数据和深拷贝与浅拷贝
2022/04/06 Python