Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
Python中不同进制的语法及转换方法分析
Jul 27 Python
Python基于identicon库创建类似Github上用的头像功能
Sep 25 Python
浅谈解除装饰器作用(python3新增)
Oct 15 Python
selenium+python自动化测试之环境搭建
Jan 23 Python
seek引发的python文件读写的问题及解决
Jul 26 Python
python装饰器练习题及答案
Nov 01 Python
Python求正态分布曲线下面积实例
Nov 20 Python
python生成任意频率正弦波方式
Feb 25 Python
解决jupyter notebook打不开无反应 浏览器未启动的问题
Apr 10 Python
基于Django快速集成Echarts代码示例
Dec 01 Python
python使用正则表达式匹配txt特定字符串(有换行)
Dec 09 Python
Pytorch 使用tensor特定条件判断索引
Apr 08 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
PHP与已存在的Java应用程序集成
2006/10/09 PHP
PHP新手上路(二)
2006/10/09 PHP
用php来改写404错误页让你的页面更友好
2013/01/24 PHP
使用Discuz关键词服务器实现PHP中文分词
2014/03/11 PHP
Laravel手动分页实现方法详解
2016/10/09 PHP
PHP实现权限管理功能示例
2017/09/22 PHP
jQuery使用hide方法隐藏页面上指定元素的方法
2015/03/30 Javascript
js实现防止被iframe的方法
2015/07/03 Javascript
JavaScript函数的一些注意要点小结及js匿名函数
2015/11/10 Javascript
Kindeditor在线文本编辑器如何过滤HTML
2016/04/14 Javascript
JavaScript手机振动API
2016/06/11 Javascript
js中如何完美的解析数据
2018/03/18 Javascript
node实现简单的增删改查接口实例代码
2019/08/22 Javascript
JS运算符简单用法示例
2020/01/19 Javascript
Vue中实现回车键切换焦点的方法
2020/02/19 Javascript
微信小程序点击生成朋友圈分享图(遇到的坑)
2020/06/17 Javascript
vue任意关系组件通信与跨组件监听状态vue-communication
2020/10/18 Javascript
vue实现树状表格效果
2020/12/29 Vue.js
[01:04:35]2018DOTA2亚洲邀请赛 4.3 突围赛 Secret vs VG 第一场
2018/04/04 DOTA
[52:20]VP vs VG Supermajor小组赛 B组胜者组决赛 BO3 第一场 6.2
2018/06/03 DOTA
windows下Virtualenvwrapper安装教程
2017/12/13 Python
Python中的self用法详解
2019/08/06 Python
python通过移动端访问查看电脑界面
2020/01/06 Python
Python如何使用27行代码绘制星星图
2020/07/20 Python
Python classmethod装饰器原理及用法解析
2020/10/17 Python
css3模拟jq点击事件的实例代码
2017/07/06 HTML / CSS
基于css3 animate制作绚丽的动画效果
2015/11/24 HTML / CSS
逼真的HTML5树叶飘落动画
2016/03/01 HTML / CSS
仓库门卫岗位职责
2013/12/22 职场文书
环保建议书作文
2014/03/12 职场文书
优秀会计求职信
2014/07/04 职场文书
报效祖国演讲稿
2014/09/15 职场文书
黑暗中的舞者观后感
2015/06/18 职场文书
MySQL深度分页(千万级数据量如何快速分页)
2021/07/25 MySQL
关于JS中的作用域中的问题思考分享
2022/04/06 Javascript
Flutter集成高德地图并添加自定义Maker的实践
2022/04/07 Java/Android