Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
Python算法之栈(stack)的实现
Aug 18 Python
python 实现删除文件或文件夹实例详解
Dec 04 Python
Python3自动签到 定时任务 判断节假日的实例
Nov 13 Python
Python3.5内置模块之os模块、sys模块、shutil模块用法实例分析
Apr 27 Python
python视频按帧截取图片工具
Jul 23 Python
python创建属于自己的单词词库 便于背单词
Jul 30 Python
如何基于Python制作有道翻译小工具
Dec 16 Python
python3 requests库实现多图片爬取教程
Dec 18 Python
Python3开发实例之非关系型图数据库Neo4j安装方法及Python3连接操作Neo4j方法实例
Mar 18 Python
用 Python 制作地球仪的方法
Apr 24 Python
python如何运行js语句
Sep 09 Python
python使用PySimpleGUI设置进度条及控件使用
Jun 10 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php变量作用域的深入解析
2013/06/03 PHP
PHP连接SQLServer2005的方法
2015/01/27 PHP
PHP利用hash冲突漏洞进行DDoS攻击的方法分析
2015/03/26 PHP
示例详解Laravel重置密码代码重构
2016/08/10 PHP
浅析PHP数据导出知识点
2018/02/17 PHP
List the UTC Time on a Computer
2007/06/11 Javascript
用js生产批量批处理执行命令
2008/07/28 Javascript
Javascript 函数对象的多重身份
2009/06/28 Javascript
JS setCapture 区域外事件捕捉
2010/03/18 Javascript
浅谈JavaScript中的字符编码转换问题
2015/07/07 Javascript
jquery中validate与form插件提交的方式小结
2016/03/26 Javascript
js插件Jcrop自定义截取图片功能
2016/10/14 Javascript
Vue通过input筛选数据
2020/10/26 Javascript
微信小程序getPhoneNumber获取用户手机号
2017/09/29 Javascript
vue.js使用3DES加密的方法示例
2018/05/18 Javascript
JS实现的合并两个有序链表算法示例
2019/02/25 Javascript
vue项目使用.env文件配置全局环境变量的方法
2019/10/24 Javascript
vue 实现LED数字时钟效果(开箱即用)
2019/12/08 Javascript
element-ui封装一个Table模板组件的示例
2021/01/04 Javascript
python简单实现基于SSL的IRC bot实例
2015/06/15 Python
Python新手入门最容易犯的错误总结
2017/04/24 Python
python实现小世界网络生成
2019/11/21 Python
pycharm 代码自动补全的实现方法(图文)
2020/09/18 Python
Python 爬虫批量爬取网页图片保存到本地的实现代码
2020/12/24 Python
韩国演唱会订票网站:StubHub韩国
2019/01/17 全球购物
extern在函数声明中是什么意思
2014/01/19 面试题
Linux的主要特性
2016/09/03 面试题
什么是SCM(软件配置管理)
2014/08/16 面试题
大学生励志演讲稿
2014/04/25 职场文书
导师就业推荐信范文
2014/05/22 职场文书
服务行业口号
2014/06/11 职场文书
六一亲子活动总结
2014/07/01 职场文书
小学领导班子对照材料
2014/08/23 职场文书
2015年事业单位办公室文员工作总结
2015/04/24 职场文书
5行Python代码实现一键批量扣图
2021/06/29 Python
Redis超详细讲解高可用主从复制基础与哨兵模式方案
2022/04/07 Redis