Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
Python的Django框架中if标签的相关使用
Jul 15 Python
Python与R语言的简要对比
Nov 14 Python
100行Python代码实现自动抢火车票(附源码)
Jan 11 Python
python爬取足球直播吧五大联赛积分榜
Jun 13 Python
Win8.1下安装Python3.6提示0x80240017错误的解决方法
Jul 31 Python
解决python 无法加载downsample模型的问题
Oct 25 Python
一步步教你用python的scrapy编写一个爬虫
Apr 17 Python
pandas中read_csv的缺失值处理方式
Dec 19 Python
python kafka 多线程消费者&amp;手动提交实例
Dec 21 Python
使用Django实现把两个模型类的数据聚合在一起
Mar 28 Python
OpenCV+python实现实时目标检测功能
Jun 24 Python
Python爬取某平台短视频的方法
Feb 08 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php正则匹配文章中的远程图片地址并下载图片至本地
2015/09/29 PHP
PHP实现的限制IP投票程序IP来源分析
2016/05/04 PHP
thinkPHP商城公告功能开发问题分析
2016/12/01 PHP
yii2 在控制器中验证请求参数的使用方法
2019/06/19 PHP
PHP手机号码及邮箱正则表达式实例解析
2020/07/11 PHP
JavaScript学习笔记(十)
2010/01/17 Javascript
JS图片预加载 JS实现图片预加载应用
2012/12/03 Javascript
jquery动态改变form属性提交表单
2014/06/03 Javascript
javascript原生和jquery库实现iframe自适应高度和宽度
2014/07/18 Javascript
Javascript 运动中Offset的bug解决方案
2014/12/24 Javascript
Javascript中的Callback方法浅析
2015/03/15 Javascript
Bootstrap3制作图片轮播效果
2016/05/12 Javascript
详解前端自动化工具gulp自动添加版本号
2016/12/20 Javascript
详解nodejs微信公众号开发——2.自动回复
2017/04/10 NodeJs
浅析Angular2子模块以及异步加载
2017/04/24 Javascript
React Native自定义控件底部抽屉菜单的示例
2018/02/08 Javascript
JavaScript中Array方法你该知道的正确打开方法
2018/09/11 Javascript
ng-repeat指令在迭代对象时的去重方法
2018/10/02 Javascript
vue+node实现图片上传及预览的示例方法
2018/11/22 Javascript
微信小程序实现banner图轮播效果
2020/06/28 Javascript
vue实现购物车案例
2020/05/30 Javascript
[03:07]DOTA2英雄基础教程 冰霜诅咒极寒幽魂
2013/12/06 DOTA
[03:28]2014DOTA2国际邀请赛 走近EG战队天才中单Arteezy
2014/07/12 DOTA
python基础教程之五种数据类型详解
2017/01/12 Python
python+selenium+autoit实现文件上传功能
2017/08/23 Python
python3调用R的示例代码
2018/02/23 Python
python字典快速保存于读取的方法
2018/03/23 Python
python添加菜单图文讲解
2019/06/04 Python
Python TCP通信客户端服务端代码实例
2019/11/21 Python
python 6行代码制作月历生成器
2020/09/18 Python
JACK & JONES瑞典官方网站:杰克琼斯欧式风格男装
2017/12/23 全球购物
建筑施工员岗位职责
2013/11/26 职场文书
企业军训感想
2014/02/07 职场文书
学习与创新自我评价
2015/03/09 职场文书
导游词之开封禹王台风景区
2019/12/02 职场文书
python数字图像处理之图像自动阈值分割示例
2022/06/28 Python