Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
用Python编写一个每天都在系统下新建一个文件夹的脚本
May 04 Python
Python引用模块和查找模块路径
Mar 17 Python
Python的Django中将文件上传至七牛云存储的代码分享
Jun 03 Python
Python中的__slots__示例详解
Jul 06 Python
Django REST为文件属性输出完整URL的方法
Dec 18 Python
对pandas的算术运算和数据对齐实例详解
Dec 22 Python
梅尔倒谱系数(MFCC)实现
Jun 19 Python
python剪切视频与合并视频的实现
Mar 03 Python
Python爬虫之Spider类用法简单介绍
Aug 04 Python
Python colormap库的安装和使用详情
Oct 06 Python
如何用用Python将地址标记在地图上
Feb 07 Python
Python语法学习之进程的创建与常用方法详解
Apr 08 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php ignore_user_abort与register_shutdown_function 使用方法
2009/06/14 PHP
支持中文字母数字、自定义字体php验证码代码
2012/02/27 PHP
解析php如何将日志写进syslog
2013/06/28 PHP
取得单条网站评论以数组形式进行输出
2014/07/28 PHP
详解PHP数组赋值方法
2015/11/07 PHP
JavaScript中几种排序算法的简单实现
2015/07/29 Javascript
js 判断所选时间(或者当前时间)是否在某一时间段的实现代码
2015/09/05 Javascript
Javascript字符串拼接小技巧(推荐)
2016/06/02 Javascript
关于JS中二维数组的声明方法
2016/09/24 Javascript
炫酷的js手风琴效果
2016/10/13 Javascript
js a标签点击事件
2017/03/30 Javascript
bootstrap的工具提示实例代码
2017/05/17 Javascript
SpringMVC+bootstrap table实例详解
2017/06/02 Javascript
vue项目中公用footer组件底部位置的适配问题
2018/05/10 Javascript
微信小程序实现购物车代码实例详解
2019/08/29 Javascript
微信小程序实现单个卡片左滑显示按钮并防止上下滑动干扰功能
2019/12/06 Javascript
微信小程序调用wx.getImageInfo遇到的坑解决
2020/05/31 Javascript
Python遍历文件夹和读写文件的实现代码
2016/08/28 Python
tensorflow 获取变量&amp;打印权值的实例讲解
2018/06/14 Python
python调用外部程序的实操步骤
2019/03/04 Python
python实现一行输入多个值和一行输出多个值的例子
2019/07/16 Python
python实现本地批量ping多个IP的方法示例
2019/08/07 Python
tensorflow转换ckpt为savermodel模型的实现
2020/05/25 Python
纯DOM+CSS3实现简单的小风车动画
2016/09/27 HTML / CSS
Vans荷兰官方网站:美国南加州的原创极限运动潮牌
2018/01/23 全球购物
资深财务管理人员自我评价
2013/09/22 职场文书
四年级数学教学反思
2014/02/02 职场文书
农村婚庆司仪主持词
2014/03/15 职场文书
财产公证书格式
2014/04/10 职场文书
城管大队整治方案
2014/05/06 职场文书
七夕相亲活动策划方案
2014/08/31 职场文书
2015年度企业工作总结
2015/05/21 职场文书
2015年教务工作总结
2015/05/23 职场文书
优胜劣汰,强者为王——读《鲁滨逊漂流记》有感
2019/08/15 职场文书
CSS3实现的3D隧道效果
2021/04/27 HTML / CSS
spring注解 @PropertySource配置数据源全流程
2022/03/25 Java/Android