Python pandas读取CSV文件的注意事项(适合新手)


Posted in Python onJune 20, 2021
目录
  • 前言
  • 示例文件
  • 文件编码
  • 空值
  • 日期错误
  • 函数映射
    • 方法1:直接使用labmda表达式
    • 方法二:使用自定义函数
    • 方法三:使用数值字典映射
  • 总结

 

前言

本文是给使用pandas的新手而写,主要列出一些常见的问题,根据笔者所踩过的坑,进行归纳总结,希望对读者有所帮助。

 

示例文件

将以下内容保存为文件 people.csv。

id,姓名,性别,出生日期,出生地,职业,爱好
1,张小三,m,1992-10-03,北京,工程师,足球
2,李云义,m,1995-02-12,上海,程序员,读书 下棋
3,周娟,女,1998-03-25,合肥,护士,音乐,跑步
4,赵盈盈,Female,2001-6-32,,学生,画画
5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治

如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:

Python pandas读取CSV文件的注意事项(适合新手)

 

文件编码

文件编码格式是最容易出错的问题之一。如果编码格式不正确,就会完全读取不出文件内容,出现类似于以下的错误, 让人完全不知所措:

---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-6-8659adefcfa6> in <module>
----> 1 pd.read_csv('people.csv', encoding='UTF-8')

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
    683         )
    684
--> 685         return _read(filepath_or_buffer, kwds)
    686
    687     parser_f.__name__ = name

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds)
    455
    456     # Create the parser.
--> 457     parser = TextFileReader(fp_or_buf, **kwds)
    458
    459     if chunksize or iterator:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds)
    893             self.options["has_index_names"] = kwds["has_index_names"]
    894
--> 895         self._make_engine(self.engine)
    896
    897     def close(self):

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine)
   1133     def _make_engine(self, engine="c"):
   1134         if engine == "c":
-> 1135             self._engine = CParserWrapper(self.f, **self.options)
   1136         else:
   1137             if engine == "python":

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds)
   1915         kwds["usecols"] = self.usecols
   1916
-> 1917         self._reader = parsers.TextReader(src, **kwds)
   1918         self.unnamed_cols = self._reader.unnamed_cols
   1919

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._get_header()

UnicodeDecodeError: 'UTF-8' codec can't decode byte 0x93 in position 2: illegal multibyte sequence

目前对于中文而言,最常使用的有 utf-8 和 UTF-8 两种格式,只需要指定正确的编码。在不知道编码的情况下,只需要尝试两次即可。padas默认的文件编码格式是 utf-8,所以如果出现以上错误,只需使用 encoding=UTF-8 再尝试一下即可,如 pd.read_csv(file, encoding='UTF-8')。

 

空值

空值是csv中也非常常见,比如以下内容:

import pandas as pd
df = pd.read_csv('people.csv')
v1=df['出生地'][3]
print(v1, type(v1))

输出为:

nan <class 'float'>

由此可见,空值也是有数据类型的,为 float 类型。

如何判断空值有两种方法,可以使用 math.isnan(x) 也可以使用 isinstance(float)。我们知道,DateFrame对象是包括Series对象,而在一个Series对象中,所有的数据类型默认是一样的,所以如果其数据类型推断为字符串(str),那么直接使用 math.isnan(x) 则会报错 TypeError: must be real number, not str 错误,即必需为实数,不能是字符串。所以,这时我们还需要使用 isinstance(x, flaot) 方法。
具体请看这个示例:

df.出生地=df.出生地.map(lambda x: '其他' if isinstance(x, float) else x)
df

Python pandas读取CSV文件的注意事项(适合新手)

 

日期错误

出生日期中,有的数据错误,如赵盈盈的出生日期是6月32号,所以报错了。对于这样类似的错误,我们可以使用函数判断的方式进行处理,具体如下。

首先,编写 isDate 函数用于判断日期是否合法。

def isDate(adate):
    try:
        sects = adate.split('-')
        year = int(sects[0])
        month = int(sects[1])
        day = int(sects[2])
        days = [0, 31, 29 if year % 4 == 0 else 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
        return year > 0 and year < 9999 and month > 0 and month <= 12 and day > 0 and day <= days[month]
    except:
        return False

然后使用以下代码进行判断:

for id in df.index:
    if not isDate(df.loc[id, '出生日期']):
        print(df.loc[id, '出生日期'])
        df.loc[id, '出生日期'] = '2000-01-01'

输出结果如下,可见错误的日期被修改成了2020年1月1日。

2001-6-32
   id   姓名      性别        出生日期          出生地   职业     爱好 
0   1  张小三       m  1992-10-03           北京  工程师     足球  
1   2  李云义       m  1995-02-12           上海  程序员  读书 下棋  
2   3   周娟       女  1998-03-25           合肥   护士  音乐,跑步  
3   4  赵盈盈  Female  2000-01-01          NaN   学生     画画   
4   5  郑强强       男  1991-03-05  南京(nanjing)   律师  历史-政治  

 

函数映射

 

方法1:直接使用labmda表达式

需要对数据列进行复杂操作的时候,我们可以使用以下函数时行相应的操作。

df=df.fillna('未知')
df.爱好=df.爱好.map(lambda x: x.split(' ')[0].split('-')[0].split(',')[0])
df

Python pandas读取CSV文件的注意事项(适合新手)

 

方法二:使用自定义函数

在进行映射时,如果操作比较简单,可以使用字典的方式进行数值映射映射(参见下文)。但是如果操作比较复杂,则需要使用函数进行映射。请看这个示例,读取到性别时,内容有 ‘m', ‘M', ‘Female' 等内容,现在需要其全部转换为 男 或 女:

def set_sex(s):
    if s.lower() == 'm' or s.lower() == 'male':
        return '男'
    elif s.lower() == 'female':
        return '女'        
    return s

df = pd.read_csv('people.csv', converters={'性别': lambda x : set_sex(x)})
df

Python pandas读取CSV文件的注意事项(适合新手)

 

方法三:使用数值字典映射

在数据处理时,数值型往往比字符串效率更高,所以在可能的情况下,我们希望将数据转换成字符串处理。请看这个示例,将输入的数据的性别中的男性转换为1 女性转换为0。操作如下:

Python pandas读取CSV文件的注意事项(适合新手)

 

总结

到此这篇关于Python pandas读取CSV文件注意事项的文章就介绍到这了,更多相关pandas读取CSV文件内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中zip()函数用法实例教程
Jul 31 Python
跟老齐学Python之有点简约的元组
Sep 24 Python
python模块简介之有序字典(OrderedDict)
Dec 01 Python
Python实现数据库并行读取和写入实例
Jun 09 Python
快速解决安装python没有scripts文件夹的问题
Apr 03 Python
python 读文件,然后转化为矩阵的实例
Apr 23 Python
Python3之简单搭建自带服务器的实例讲解
Jun 04 Python
实用自动化运维Python脚本分享
Jun 04 Python
几行Python代码爬取3000+上市公司的信息
Jan 24 Python
如何在VSCode上轻松舒适的配置Python的方法步骤
Oct 28 Python
基于Python实现扑克牌面试题
Dec 11 Python
基于python实现计算两组数据P值
Jul 10 Python
python简单验证码识别的实现过程
Python pygame实现中国象棋单机版源码
Python并发编程实例教程之线程的玩法
Jun 20 #Python
python迷宫问题深度优先遍历实例
Jun 20 #Python
Python虚拟环境virtualenv是如何使用的
Python机器学习之底层实现KNN
Jun 20 #Python
利用python进行数据加载
Jun 20 #Python
You might like
《神奇女侠:血脉》神力女超人大战犯罪公司
2020/04/09 欧美动漫
PHP中调用JAVA
2006/10/09 PHP
用Zend Encode编写开发PHP程序
2010/02/21 PHP
php中explode的负数limit用法分析
2015/02/27 PHP
php自动更新版权信息显示的方法
2015/06/19 PHP
PHP调用QQ互联接口实现QQ登录网站功能示例
2019/10/24 PHP
获取Javscript执行函数名称的方法
2006/12/22 Javascript
Prototype Date对象 学习
2009/07/12 Javascript
jQuery对象和DOM对象使用说明
2010/06/25 Javascript
JS打开图片另存为对话框实现代码
2012/12/26 Javascript
js浮点数精确计算(加、减、乘、除)
2013/12/26 Javascript
JavaScript中的Web worker多线程API研究
2014/12/06 Javascript
浅谈js中对象的使用
2016/08/11 Javascript
Angular.js指令学习中一些重要属性的用法教程
2017/05/24 Javascript
Angular5中调用第三方js插件的方法
2018/02/26 Javascript
一个因@click.stop引发的bug的解决
2019/01/08 Javascript
小程序实现多列选择器
2019/02/15 Javascript
一篇文章介绍redux、react-redux、redux-saga总结
2019/05/23 Javascript
JS使用new操作符创建对象的方法分析
2019/05/30 Javascript
JS 封装父页面子页面交互接口的实例代码
2019/06/25 Javascript
解决mui框架中switch开关通过js控制开或者关状态时小圆点不动的问题
2019/09/03 Javascript
Layui数据表格跳转到指定页的实现方法
2019/09/05 Javascript
javascript实现简单搜索功能
2020/03/26 Javascript
[48:23]DOTA2上海特级锦标赛主赛事日 - 4 败者组第四轮#1COL VS EG第一局
2016/03/05 DOTA
python中list循环语句用法实例
2014/11/10 Python
python基于Tkinter库实现简单文本编辑器实例
2015/05/05 Python
Python通过poll实现异步IO的方法
2015/06/04 Python
全面了解python中的类,对象,方法,属性
2016/09/11 Python
python模块之re正则表达式详解
2017/02/03 Python
Django应用程序中如何发送电子邮件详解
2017/02/04 Python
python中defaultdict的用法详解
2017/06/07 Python
使用Py2Exe for Python3创建自己的exe程序示例
2018/10/31 Python
使用Python下载抖音各大V视频的思路详解
2021/02/06 Python
《司马光》教学反思
2016/02/22 职场文书
Python基础之元组与文件知识总结
2021/05/19 Python
python简单验证码识别的实现过程
2021/06/20 Python