Python pandas读取CSV文件的注意事项(适合新手)


Posted in Python onJune 20, 2021
目录
  • 前言
  • 示例文件
  • 文件编码
  • 空值
  • 日期错误
  • 函数映射
    • 方法1:直接使用labmda表达式
    • 方法二:使用自定义函数
    • 方法三:使用数值字典映射
  • 总结

 

前言

本文是给使用pandas的新手而写,主要列出一些常见的问题,根据笔者所踩过的坑,进行归纳总结,希望对读者有所帮助。

 

示例文件

将以下内容保存为文件 people.csv。

id,姓名,性别,出生日期,出生地,职业,爱好
1,张小三,m,1992-10-03,北京,工程师,足球
2,李云义,m,1995-02-12,上海,程序员,读书 下棋
3,周娟,女,1998-03-25,合肥,护士,音乐,跑步
4,赵盈盈,Female,2001-6-32,,学生,画画
5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治

如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:

Python pandas读取CSV文件的注意事项(适合新手)

 

文件编码

文件编码格式是最容易出错的问题之一。如果编码格式不正确,就会完全读取不出文件内容,出现类似于以下的错误, 让人完全不知所措:

---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-6-8659adefcfa6> in <module>
----> 1 pd.read_csv('people.csv', encoding='UTF-8')

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
    683         )
    684
--> 685         return _read(filepath_or_buffer, kwds)
    686
    687     parser_f.__name__ = name

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds)
    455
    456     # Create the parser.
--> 457     parser = TextFileReader(fp_or_buf, **kwds)
    458
    459     if chunksize or iterator:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds)
    893             self.options["has_index_names"] = kwds["has_index_names"]
    894
--> 895         self._make_engine(self.engine)
    896
    897     def close(self):

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine)
   1133     def _make_engine(self, engine="c"):
   1134         if engine == "c":
-> 1135             self._engine = CParserWrapper(self.f, **self.options)
   1136         else:
   1137             if engine == "python":

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds)
   1915         kwds["usecols"] = self.usecols
   1916
-> 1917         self._reader = parsers.TextReader(src, **kwds)
   1918         self.unnamed_cols = self._reader.unnamed_cols
   1919

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._get_header()

UnicodeDecodeError: 'UTF-8' codec can't decode byte 0x93 in position 2: illegal multibyte sequence

目前对于中文而言,最常使用的有 utf-8 和 UTF-8 两种格式,只需要指定正确的编码。在不知道编码的情况下,只需要尝试两次即可。padas默认的文件编码格式是 utf-8,所以如果出现以上错误,只需使用 encoding=UTF-8 再尝试一下即可,如 pd.read_csv(file, encoding='UTF-8')。

 

空值

空值是csv中也非常常见,比如以下内容:

import pandas as pd
df = pd.read_csv('people.csv')
v1=df['出生地'][3]
print(v1, type(v1))

输出为:

nan <class 'float'>

由此可见,空值也是有数据类型的,为 float 类型。

如何判断空值有两种方法,可以使用 math.isnan(x) 也可以使用 isinstance(float)。我们知道,DateFrame对象是包括Series对象,而在一个Series对象中,所有的数据类型默认是一样的,所以如果其数据类型推断为字符串(str),那么直接使用 math.isnan(x) 则会报错 TypeError: must be real number, not str 错误,即必需为实数,不能是字符串。所以,这时我们还需要使用 isinstance(x, flaot) 方法。
具体请看这个示例:

df.出生地=df.出生地.map(lambda x: '其他' if isinstance(x, float) else x)
df

Python pandas读取CSV文件的注意事项(适合新手)

 

日期错误

出生日期中,有的数据错误,如赵盈盈的出生日期是6月32号,所以报错了。对于这样类似的错误,我们可以使用函数判断的方式进行处理,具体如下。

首先,编写 isDate 函数用于判断日期是否合法。

def isDate(adate):
    try:
        sects = adate.split('-')
        year = int(sects[0])
        month = int(sects[1])
        day = int(sects[2])
        days = [0, 31, 29 if year % 4 == 0 else 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
        return year > 0 and year < 9999 and month > 0 and month <= 12 and day > 0 and day <= days[month]
    except:
        return False

然后使用以下代码进行判断:

for id in df.index:
    if not isDate(df.loc[id, '出生日期']):
        print(df.loc[id, '出生日期'])
        df.loc[id, '出生日期'] = '2000-01-01'

输出结果如下,可见错误的日期被修改成了2020年1月1日。

2001-6-32
   id   姓名      性别        出生日期          出生地   职业     爱好 
0   1  张小三       m  1992-10-03           北京  工程师     足球  
1   2  李云义       m  1995-02-12           上海  程序员  读书 下棋  
2   3   周娟       女  1998-03-25           合肥   护士  音乐,跑步  
3   4  赵盈盈  Female  2000-01-01          NaN   学生     画画   
4   5  郑强强       男  1991-03-05  南京(nanjing)   律师  历史-政治  

 

函数映射

 

方法1:直接使用labmda表达式

需要对数据列进行复杂操作的时候,我们可以使用以下函数时行相应的操作。

df=df.fillna('未知')
df.爱好=df.爱好.map(lambda x: x.split(' ')[0].split('-')[0].split(',')[0])
df

Python pandas读取CSV文件的注意事项(适合新手)

 

方法二:使用自定义函数

在进行映射时,如果操作比较简单,可以使用字典的方式进行数值映射映射(参见下文)。但是如果操作比较复杂,则需要使用函数进行映射。请看这个示例,读取到性别时,内容有 ‘m', ‘M', ‘Female' 等内容,现在需要其全部转换为 男 或 女:

def set_sex(s):
    if s.lower() == 'm' or s.lower() == 'male':
        return '男'
    elif s.lower() == 'female':
        return '女'        
    return s

df = pd.read_csv('people.csv', converters={'性别': lambda x : set_sex(x)})
df

Python pandas读取CSV文件的注意事项(适合新手)

 

方法三:使用数值字典映射

在数据处理时,数值型往往比字符串效率更高,所以在可能的情况下,我们希望将数据转换成字符串处理。请看这个示例,将输入的数据的性别中的男性转换为1 女性转换为0。操作如下:

Python pandas读取CSV文件的注意事项(适合新手)

 

总结

到此这篇关于Python pandas读取CSV文件注意事项的文章就介绍到这了,更多相关pandas读取CSV文件内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python学习小技巧之利用字典的默认行为
May 20 Python
git使用.gitignore设置不生效或不起作用问题的解决方法
Jun 01 Python
python查看列的唯一值方法
Jul 17 Python
python实现指定文件夹下的指定文件移动到指定位置
Sep 17 Python
在PyCharm下打包*.py程序成.exe的方法
Nov 29 Python
快速解决pyqt5窗体关闭后子线程不同时退出的问题
Jun 19 Python
django中SMTP发送邮件配置详解
Jul 19 Python
python实现KNN分类算法
Oct 16 Python
Python使用Socket实现简单聊天程序
Feb 28 Python
opencv 图像礼帽和图像黑帽的实现
Jul 07 Python
python Autopep8实现按PEP8风格自动排版Python代码
Mar 02 Python
Python中zipfile压缩包模块的使用
May 14 Python
python简单验证码识别的实现过程
Python pygame实现中国象棋单机版源码
Python并发编程实例教程之线程的玩法
Jun 20 #Python
python迷宫问题深度优先遍历实例
Jun 20 #Python
Python虚拟环境virtualenv是如何使用的
Python机器学习之底层实现KNN
Jun 20 #Python
利用python进行数据加载
Jun 20 #Python
You might like
Yii框架数据模型的验证规则rules()被执行的方法
2016/12/02 PHP
PHP数组常用函数实例小结
2018/08/20 PHP
走出JavaScript初学困境—js初学
2008/12/29 Javascript
JS 参数传递的实际应用代码分析
2009/09/13 Javascript
jQuery 表格工具集
2010/04/25 Javascript
jquery五角星评分插件示例分享
2014/02/21 Javascript
Jquery原生态实现表格header头随滚动条滚动而滚动
2014/03/18 Javascript
jQuery选择器全集详解
2014/11/24 Javascript
jquery实现图片随机排列的方法
2015/05/04 Javascript
javascript设计简单的秒表计时器
2020/09/05 Javascript
对angularjs框架下controller间的传值方法详解
2018/10/08 Javascript
使用vue实现一个电子签名组件的示例代码
2020/01/06 Javascript
Layer UI表格列日期格式化及取消自动填充日期的实现方法
2020/05/10 Javascript
[02:56]《DAC最前线》之国外战队抵达上海备战亚洲邀请赛
2015/01/28 DOTA
Python random模块常用方法
2014/11/03 Python
Java多线程编程中ThreadLocal类的用法及深入
2016/06/21 Python
Python 加密的实例详解
2017/10/09 Python
Python打印“菱形”星号代码方法
2018/02/05 Python
Linux(Redhat)安装python3.6虚拟环境(推荐)
2018/05/05 Python
解决python中遇到字典里key值为None的情况,取不出来的问题
2018/10/17 Python
django框架CSRF防护原理与用法分析
2019/07/22 Python
pyinstaller打包程序exe踩过的坑
2019/11/19 Python
基于plt.title无法显示中文的快速解决
2020/05/16 Python
如何开发一款堪比APP的微信小程序(腾讯内部团队分享)
2016/12/22 HTML / CSS
Nordgreen手表德国官方网站:丹麦极简主义手表
2019/10/31 全球购物
大专生自我鉴定范文
2013/10/01 职场文书
外企办公室竞聘演讲稿
2013/12/29 职场文书
写给爸爸的道歉信
2014/01/15 职场文书
中青班党性分析材料
2014/02/16 职场文书
歌颂党的演讲稿
2014/09/10 职场文书
工程项目合作意向书
2015/05/08 职场文书
地雷战观后感
2015/06/09 职场文书
幼儿园亲子活动感想
2015/08/07 职场文书
三严三实·严以律己心得体会
2016/01/13 职场文书
幼儿园2016年感恩节活动总结
2016/04/01 职场文书
PostgreSQL数据库创建并使用视图以及子查询
2022/04/11 PostgreSQL