深入了解如何基于Python读写Kafka


Posted in Python onDecember 31, 2019

这篇文章主要介绍了深入了解如何基于Python读写Kafka,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

本篇会给出如何使用python来读写kafka, 包含生产者和消费者.

以下使用kafka-python客户端

生产者

爬虫大多时候作为消息的发送端, 在消息发出去后最好能记录消息被发送到了哪个分区, offset是多少, 这些记录在很多情况下可以帮助快速定位问题, 所以需要在send方法后加入callback函数, 包括成功和失败的处理

# -*- coding: utf-8 -*-

'''
callback也是保证分区有序的, 比如2条消息, a先发送, b后发送, 对于同一个分区, 那么会先回调a的callback, 再回调b的callback
'''

import json
from kafka import KafkaProducer

topic = 'demo'


def on_send_success(record_metadata):
  print(record_metadata.topic)
  print(record_metadata.partition)
  print(record_metadata.offset)


def on_send_error(excp):
  print('I am an errback: {}'.format(excp))


def main():
  producer = KafkaProducer(
    bootstrap_servers='localhost:9092'
  )
  producer.send(topic, value=b'{"test_msg":"hello world"}').add_callback(on_send_success).add_callback(
    on_send_error)
  # close() 方法会阻塞等待之前所有的发送请求完成后再关闭 KafkaProducer
  producer.close()


def main2():
  '''
  发送json格式消息
  :return:
  '''
  producer = KafkaProducer(
    bootstrap_servers='localhost:9092',
    value_serializer=lambda m: json.dumps(m).encode('utf-8')
  )
  producer.send(topic, value={"test_msg": "hello world"}).add_callback(on_send_success).add_callback(
    on_send_error)
  # close() 方法会阻塞等待之前所有的发送请求完成后再关闭 KafkaProducer
  producer.close()
if __name__ == '__main__':
  # main()
  main2()

消费者

kafka的消费模型比较复杂, 我会分以下几种情况来进行说明

1.不使用消费组(group_id=None)

不使用消费组的情况下可以启动很多个消费者, 不再受限于分区数, 即使消费者数量 > 分区数, 每个消费者也都可以收到消息

# -*- coding: utf-8 -*-

'''
消费者: group_id=None
'''
from kafka import KafkaConsumer
topic = 'demo'
def main():
  consumer = KafkaConsumer(
    topic,
    bootstrap_servers='localhost:9092',
    auto_offset_reset='latest',
    # auto_offset_reset='earliest',
  )
  for msg in consumer:
    print(msg)
    print(msg.value)
  consumer.close()
if __name__ == '__main__':
  main()

2.指定消费组

以下使用pool方法来拉取消息

pool 每次拉取只能拉取一个分区的消息, 比如有2个分区1个consumer, 那么会拉取2次

pool 是如果有消息马上进行拉取, 如果timeout_ms内没有新消息则返回空dict, 所以可能出现某次拉取了1条消息, 某次拉取了max_records条

# -*- coding: utf-8 -*-

'''
消费者: 指定group_id
'''

from kafka import KafkaConsumer

topic = 'demo'
group_id = 'test_id'


def main():
  consumer = KafkaConsumer(
    topic,
    bootstrap_servers='localhost:9092',
    auto_offset_reset='latest',
    group_id=group_id,

  )
  while True:
    try:
      # return a dict
      batch_msgs = consumer.poll(timeout_ms=1000, max_records=2)
      if not batch_msgs:
        continue
      '''
      {TopicPartition(topic='demo', partition=0): [ConsumerRecord(topic='demo', partition=0, offset=42, timestamp=1576425111411, timestamp_type=0, key=None, value=b'74', headers=[], checksum=None, serialized_key_size=-1, serialized_value_size=2, serialized_header_size=-1)]}
      '''
      for tp, msgs in batch_msgs.items():
        print('topic: {}, partition: {} receive length: '.format(tp.topic, tp.partition, len(msgs)))
        for msg in msgs:
          print(msg.value)
    except KeyboardInterrupt:
      break

  consumer.close()


if __name__ == '__main__':
  main()

关于消费组

我们根据配置参数分为以下几种情况

  • group_id=None
    • auto_offset_reset='latest': 每次启动都会从最新出开始消费, 重启后会丢失重启过程中的数据
    • auto_offset_reset='latest': 每次从最新的开始消费, 不会管哪些任务还没有消费
  • 指定group_id
    • 全新group_id
      • auto_offset_reset='latest': 只消费启动后的收到的数据, 重启后会从上次提交offset的地方开始消费
      • auto_offset_reset='earliest': 从最开始消费全量数据
    • 旧group_id(即kafka集群中还保留着该group_id的提交记录)
      • auto_offset_reset='latest': 从上次提交offset的地方开始消费
      • auto_offset_reset='earliest': 从上次提交offset的地方开始消费

性能测试

以下是在本地进行的测试, 如果要在线上使用kakfa, 建议提前进行性能测试

producer

# -*- coding: utf-8 -*-

'''
producer performance

environment:
  mac
  python3.7
  broker 1
  partition 2
'''

import json
import time
from kafka import KafkaProducer

topic = 'demo'
nums = 1000000


def main():
  producer = KafkaProducer(
    bootstrap_servers='localhost:9092',
    value_serializer=lambda m: json.dumps(m).encode('utf-8')
  )
  st = time.time()
  cnt = 0
  for _ in range(nums):
    producer.send(topic, value=_)
    cnt += 1
    if cnt % 10000 == 0:
      print(cnt)

  producer.flush()

  et = time.time()
  cost_time = et - st
  print('send nums: {}, cost time: {}, rate: {}/s'.format(nums, cost_time, nums // cost_time))


if __name__ == '__main__':
  main()

'''
send nums: 1000000, cost time: 61.89236712455749, rate: 16157.0/s
send nums: 1000000, cost time: 61.29534196853638, rate: 16314.0/s
'''

consumer

# -*- coding: utf-8 -*-

'''
consumer performance
'''

import time
from kafka import KafkaConsumer

topic = 'demo'
group_id = 'test_id'


def main1():
  nums = 0
  st = time.time()

  consumer = KafkaConsumer(
    topic,
    bootstrap_servers='localhost:9092',
    auto_offset_reset='latest',
    group_id=group_id
  )
  for msg in consumer:
    nums += 1
    if nums >= 500000:
      break
  consumer.close()

  et = time.time()
  cost_time = et - st
  print('one_by_one: consume nums: {}, cost time: {}, rate: {}/s'.format(nums, cost_time, nums // cost_time))


def main2():
  nums = 0
  st = time.time()

  consumer = KafkaConsumer(
    topic,
    bootstrap_servers='localhost:9092',
    auto_offset_reset='latest',
    group_id=group_id
  )
  running = True
  batch_pool_nums = 1
  while running:
    batch_msgs = consumer.poll(timeout_ms=1000, max_records=batch_pool_nums)
    if not batch_msgs:
      continue
    for tp, msgs in batch_msgs.items():
      nums += len(msgs)
      if nums >= 500000:
        running = False
        break

  consumer.close()

  et = time.time()
  cost_time = et - st
  print('batch_pool: max_records: {} consume nums: {}, cost time: {}, rate: {}/s'.format(batch_pool_nums, nums,
                                              cost_time,
                                              nums // cost_time))


if __name__ == '__main__':
  # main1()
  main2()

'''
one_by_one: consume nums: 500000, cost time: 8.018627166748047, rate: 62354.0/s
one_by_one: consume nums: 500000, cost time: 7.698841094970703, rate: 64944.0/s


batch_pool: max_records: 1 consume nums: 500000, cost time: 17.975456953048706, rate: 27815.0/s
batch_pool: max_records: 1 consume nums: 500000, cost time: 16.711708784103394, rate: 29919.0/s

batch_pool: max_records: 500 consume nums: 500369, cost time: 6.654940843582153, rate: 75187.0/s
batch_pool: max_records: 500 consume nums: 500183, cost time: 6.854053258895874, rate: 72976.0/s

batch_pool: max_records: 1000 consume nums: 500485, cost time: 6.504687070846558, rate: 76942.0/s
batch_pool: max_records: 1000 consume nums: 500775, cost time: 7.047331809997559, rate: 71058.0/s
'''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python爬虫教程之爬取百度贴吧并下载的示例
Mar 07 Python
Python抓取京东图书评论数据
Aug 31 Python
Python中getattr函数和hasattr函数作用详解
Jun 14 Python
Python中实现switch功能实例解析
Jan 11 Python
详解python分布式进程
Oct 08 Python
python采集微信公众号文章
Dec 20 Python
使用pycharm设置控制台不换行的操作方法
Jan 19 Python
Python设计模式之策略模式实例详解
Jan 21 Python
解决django中ModelForm多表单组合的问题
Jul 18 Python
pyinstaller打包opencv和numpy程序运行错误解决
Aug 16 Python
python调用Matplotlib绘制分布点图
Oct 18 Python
python 操作hive pyhs2方式
Dec 21 Python
Python面向对象之继承原理与用法案例分析
Dec 31 #Python
pytorch中nn.Conv1d的用法详解
Dec 31 #Python
Python实现剪刀石头布小游戏(与电脑对战)
Dec 31 #Python
Pytorch之卷积层的使用详解
Dec 31 #Python
Python中bisect的使用方法
Dec 31 #Python
pytorch中tensor张量数据类型的转化方式
Dec 31 #Python
Pytorch之parameters的使用
Dec 31 #Python
You might like
php+Ajax处理xml与json格式数据的方法示例
2019/03/04 PHP
Display SQL Server Version Information
2007/06/21 Javascript
jQuery中与toggleClass等价的程序段 以及未来学习的方向
2010/03/18 Javascript
Jquery下:nth-child(an+b)的使用注意
2011/05/28 Javascript
读取input:file的路径并显示本地图片的方法
2013/09/23 Javascript
Jquery对数组的操作技巧整理
2014/03/25 Javascript
JavaScript编写点击查看大图的页面半透明遮罩层效果实例
2016/05/09 Javascript
HTML Table 空白单元格补全的简单实现
2016/10/13 Javascript
bootstrap multiselect 多选功能实现方法
2017/06/05 Javascript
Vue.js 实现微信公众号菜单编辑器功能(二)
2018/05/08 Javascript
基于原生js实现九宫格算法代码实例
2020/07/03 Javascript
[40:19]2018完美盛典CS.GO表演赛
2018/12/17 DOTA
Python中条件判断语句的简单使用方法
2015/08/21 Python
python基础教程之五种数据类型详解
2017/01/12 Python
Python生成随机密码的方法
2017/06/16 Python
python计算auc指标实例
2017/07/13 Python
对Python 获取类的成员变量及临时变量的方法详解
2019/01/22 Python
python实现两个dict合并与计算操作示例
2019/07/01 Python
python通过安装itchat包实现微信自动回复收到的春节祝福
2020/01/19 Python
Python集成开发工具Pycharm的安装和使用详解
2020/03/18 Python
Python如何把十进制数转换成ip地址
2020/05/25 Python
python框架flask入门之环境搭建及开启调试
2020/06/07 Python
解决Pycharm 中遇到Unresolved reference 'sklearn'的问题
2020/07/13 Python
python如何变换环境
2020/07/21 Python
Html5游戏开发之乒乓Ping Pong游戏示例(一)
2013/01/21 HTML / CSS
HTML5 video标签(播放器)学习笔记(一):使用入门
2015/04/24 HTML / CSS
美国知名珠宝首饰品牌:Gemvara
2017/10/06 全球购物
介绍一下SQL注入攻击的种类和防范手段
2012/02/18 面试题
DIY蛋糕店的创业计划书范文
2013/12/26 职场文书
安全检查与奖惩制度
2014/01/23 职场文书
初中班主任评语
2014/04/24 职场文书
学习焦裕禄精神践行三严三实心得体会
2014/10/13 职场文书
心理学培训心得体会
2016/01/22 职场文书
《失物招领》教学反思
2016/02/20 职场文书
2019年让高校“心动”的自荐信
2019/03/25 职场文书
十大冰系宝可梦排名,颜值最高的阿罗拉九尾,第三使用率第一
2022/03/18 日漫