Python数据分析:手把手教你用Pandas生成可视化图表的教程


Posted in Python onDecember 15, 2018

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。

作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。

下面,我们总结一下PD库的一些使用方法和入门技巧。

一、线型图

对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。参考以下示例代码 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
 periods=10), columns=list('ABCD'))
 
df.plot()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

如果索引由日期组成,则调用gct().autofmt_xdate()来格式化x轴,如上图所示。

我们可以使用x和y关键字绘制一列与另一列。

s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()

Python数据分析:手把手教你用Pandas生成可视化图表的教程

pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):

df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[' A', 'B', 'C', 'D'], index= np. arange( 0, 100, 10)) 
 
df. plot()

Python数据分析:手把手教你用Pandas生成可视化图表的教程

二、柱状图

在生成线型图的代码中加上 kind=' bar'( 垂直柱状图) 或 kind=' barh'( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:

In [59]: fig, axes = plt. subplots( 2, 1) 
 
In [60]: data = Series( np. random. rand( 16), index= list(' abcdefghijklmnop')) 
 
In [61]: data. plot( kind=' bar', ax= axes[ 0], color=' k', alpha= 0. 7) 
 
Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750> 
 
In [62]: data. plot( kind=' barh', ax= axes[ 1], color=' k', alpha= 0.

对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:

In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[' one', 'two', 'three', 'four', 'five', 'six'], ...: columns= pd. Index([' A', 'B', 'C', 'D'], name=' Genus')) 
 
In [64]: df 
 
Out[ 64]: 
 
Genus 
 
   A   B   C   D 
one 0. 301686 0. 156333 0. 371943 0. 270731 
two 0. 750589 0. 525587 0. 689429 0. 358974 
three 0. 381504 0. 667707 0. 473772 0. 632528 
four 0. 942408 0. 180186 0. 708284 0. 641783 
five 0. 840278 0. 909589 0. 010041 0. 653207 
six 0. 062854 0. 589813 0. 811318 0. 060217 
 
In [65]: df. plot( kind=' bar')

Python数据分析:手把手教你用Pandas生成可视化图表的教程

三、条形图

现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要生成一个堆积条形图,通过指定:pass stacked=True -

import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要获得水平条形图,使用barh()方法 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
 
df.plot.barh(stacked=True)

四、直方图

可以使用plot.hist()方法绘制直方图。我们可以指定bins的数量值。

import pandas as pd
import numpy as np
 
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
 
df.plot.hist(bins=20)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要为每列绘制不同的直方图,请使用以下代码 -

import pandas as pd
import numpy as np
 
df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
 
df.hist(bins=20)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

五、箱型图

Boxplot可以绘制调用Series.box.plot()和DataFrame.box.plot()或DataFrame.boxplot()来可视化每列中值的分布。

例如,这里是一个箱形图,表示对[0,1)上的统一随机变量的10次观察的五次试验。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

六、块型图

可以使用Series.plot.area()或DataFrame.plot.area()方法创建区域图形。

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

七、散点图

可以使用DataFrame.plot.scatter()方法创建散点图。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

八、饼状图

饼状图可以使用DataFrame.plot.pie()方法创建。

import pandas as pd
import numpy as np
 
df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

以上这篇Python数据分析:手把手教你用Pandas生成可视化图表的教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Python中__str__和__repr__方法的区别
Apr 17 Python
Python lxml模块安装教程
Jun 02 Python
Python编程实现蚁群算法详解
Nov 13 Python
Python爬虫获取图片并下载保存至本地的实例
Jun 01 Python
pyqt5 使用cv2 显示图片,摄像头的实例
Jun 27 Python
python 中Arduino串口传输数据到电脑并保存至excel表格
Oct 14 Python
Python元组 tuple的概念与基本操作详解【定义、创建、访问、计数、推导式等】
Oct 30 Python
python 给图像添加透明度(alpha通道)
Apr 09 Python
Django项目在pycharm新建的步骤方法
Mar 02 Python
十个Python自动化常用操作,即拿即用
May 10 Python
Python+Selenium实现读取网易邮箱验证码
Mar 13 Python
Python实现对齐打印 format函数的用法
Apr 28 Python
浅谈python 导入模块和解决文件句柄找不到问题
Dec 15 #Python
对python当中不在本路径的py文件的引用详解
Dec 15 #Python
对python3 中方法各种参数和返回值详解
Dec 15 #Python
对python中的argv和argc使用详解
Dec 15 #Python
Python输出\u编码将其转换成中文的实例
Dec 15 #Python
对python:print打印时加u的含义详解
Dec 15 #Python
Python 最大概率法进行汉语切分的方法
Dec 14 #Python
You might like
在PHP的图形函数中显示汉字
2006/10/09 PHP
PHP实现根据浏览器跳转不同语言页面代码
2013/08/02 PHP
codeigniter框架批量插入数据
2014/01/09 PHP
php多文件上传实现代码
2014/02/20 PHP
thinkphp5.0整合phpsocketio完整攻略(绕坑)
2018/10/12 PHP
PHP-FPM和Nginx的通信机制详解
2019/02/01 PHP
PHP程序员简单的开展服务治理架构操作详解(三)
2020/05/14 PHP
javascript 二维数组的实现与应用
2010/03/16 Javascript
javascript设计模式之工厂模式示例讲解
2014/03/04 Javascript
javascript轻量级模板引擎juicer使用指南
2014/06/22 Javascript
简要了解jQuery移动web开发的响应式布局设计
2015/12/04 Javascript
Bootstrap CSS组件之输入框组
2016/12/17 Javascript
js将字符串中的每一个单词的首字母变为大写其余均为小写
2017/01/05 Javascript
js实现分页功能
2017/05/24 Javascript
原生JS与CSS实现软件卸载对话框功能
2019/12/05 Javascript
JS数组方法push()、pop()用法实例分析
2020/01/18 Javascript
ES6学习笔记之let与const用法实例分析
2020/01/22 Javascript
Eclipse + Python 的安装与配置流程
2013/03/05 Python
举例讲解Python中的算数运算符的用法
2015/05/13 Python
浅谈Scrapy网络爬虫框架的工作原理和数据采集
2019/02/07 Python
Python实现html转换为pdf报告(生成pdf报告)功能示例
2019/05/04 Python
详解PyTorch手写数字识别(MNIST数据集)
2019/08/16 Python
Python如何应用cx_Oracle获取oracle中的clob字段问题
2019/08/27 Python
Python解析json代码实例解析
2019/11/25 Python
python统计mysql数据量变化并调用接口告警的示例代码
2020/09/21 Python
Html5页面点击遮罩层背景关闭遮罩层
2020/11/30 HTML / CSS
英国在线潜水商店:Simply Scuba
2019/03/25 全球购物
以设计师精品品质提供快速时尚:Mostata
2019/05/10 全球购物
aden + anais英国官网:美国婴儿贴身用品品牌
2019/09/08 全球购物
JPA的优势都有哪些
2013/07/04 面试题
淘宝客服自我总结鉴定
2014/01/25 职场文书
远程研修随笔感言
2014/02/10 职场文书
舞蹈毕业生的自我评价
2014/03/05 职场文书
总账会计岗位职责
2014/03/13 职场文书
2016年度创先争优活动总结
2016/04/05 职场文书
教你用Java在个人电脑上实现微信扫码支付
2021/06/13 Java/Android