Python中使用Opencv开发停车位计数器功能


Posted in Python onApril 04, 2022

在这个项目中,我们将创建一个停车位计数器。我们会发现总共有多少辆车,以及有多少停车位是空的。关于本教程最好的一点是,我们将使用基本的图像处理技术来解决这个问题,没有使用机器学习、深度学习进行训练来识别。

1. 环境安装

1.1 安装并激活虚拟环境

python -m venv venv
cd venv\Scripts
.\activate.bat

1.2 python包安装

pip install opencv-python

2. 绘制停车位矩形框

2.1 导入停车场图片

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.imshow("image",img)

Python中使用Opencv开发停车位计数器功能

2.2 绘制矩形框 定位停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.rectangle(img,(50,192),(157,240),(255,0,255),2)  #坐标位置可以多次尝试确定
cv2.imshow("image",img)
cv2.waitKey(0)

Python中使用Opencv开发停车位计数器功能

可以看出,每个停车位的估计宽、高为:

width=107  # 157-102
height = 48 # 240 - 192

2.3 鼠标添加、删除停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
while True:
	img = cv2.imread("carParkImg.png")
	cv2.imshow("images",img)
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("images",mouseClick)
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

Python中使用Opencv开发停车位计数器功能

通过鼠标点击在任何位置添加矩形框,但当矩形框位置出错时,无法进行删除。因此通过添加鼠标右键的事件,删除错误的矩形框。

def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)

通过pickle.dump()保持保存鼠标点击的位置信息。

with open('CarParkPos','wb') as f:
	pickle.dump(posList,f)

通过pickle.load()加载保存好的位置信息,即在原有的停车位添加或删除停车位,而不是每一帧画面重新绘制。

with open('CarParkPos','wb') as f:
	posList = pickle.load(f)

完整代码如下:

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
try:
	with open('CarParkPos','rb') as f:
		posList = pickle.load(f)
except:
	posList = []
# posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)
	
	with open('CarParkPos','wb') as f:
		pickle.dump(posList,f)
while True:
	img = cv2.imread("carParkImg.png")
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("image",mouseClick)
	
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

3. 停车位视频分析

3. 1 停车监控视频

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
while True:
    success,img= cap.read()
    cv2.imshow("Image",img)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

视频时间比较短,为了让视频循环播放,添加如下代码:

if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
	cap.set(cv2.CAP_PROP_POS_FRAMES,0)
  • cv2.CAP_PROP_POS_FRAMES :视频播放当前帧
  • cv2.CAP_PROP_FRAME_COUNT :视频总帧数

即:当前视频播放到结尾时,重新播放

3. 2 截取停车位

截取停车位,回来对每个停车位进行图像处理,从而分析该停车位是否被占用

def checkParkingSpace():
    for pos in posList:
        x,y = pos
        imgCrop=img[y:y+height,x:x+width]
        cv2.imshow(str(x*y),imgCrop)

Python中使用Opencv开发停车位计数器功能

3. 3 图像处理

对图像二值化、高斯模糊处理

imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)

Python中使用Opencv开发停车位计数器功能

利用自适应二值化对图像进行处理

imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)

cv2.adaptiveThreshold 参数的选择可以通过TrackBar拖到滚动条,直到选择合适的数值。

Python中使用Opencv开发停车位计数器功能

可以看出停车位上有车辆时白色像素点比较多,停车位没有车辆时,白色像素点很少甚至没有,因此我们可以基于白色像素点数量来确定该车为是否被占用。同时可以看到当停车位为空时存在一些椒盐噪声,通过medianBlur来处理椒盐噪声

imgMedian = cv2.medianBlur(imgThreshold,5)

Python中使用Opencv开发停车位计数器功能

可以看出椒盐噪声少了一部分。
使用dilate(膨胀)增强白色像素值,便于更好区分每个停车位是否被占用

kernel=np.ones((3,3),np.uint8);
 imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)

Python中使用Opencv开发停车位计数器功能

可以看出白色的轮廓比之前加厚了

3. 4 判断停车位是否被占用

截取每个停车位,经过处理后的图像,统计白色像素的数量
修改checkParkingSpace函数,将处理好的图像传入函数

def checkParkingSpace(imgProc):
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        cvzone.putTextRect(img,str(count),(x,y+height-3,scale =1.5,thickness=2,offset=0)

Python中使用Opencv开发停车位计数器功能

对比可以看出,占有车位的数值比较大1000-2000,空车位的200-500,数值的差距比较大。

画出所有停车位,对比找出合适的阈值,区分停车位为空还是被占用了。

Python中使用Opencv开发停车位计数器功能

可以看出停车位为空时,值为0-600,而停车位被占用,值为:960-2300,因此我们设定阈值为750。所以低于750此时停车位没有车,高于950则停车位有车。

Python中使用Opencv开发停车位计数器功能

加上文字描述

代码

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
with open('CarParkPos','rb') as f:
    posList = pickle.load(f)
width,height=107,48
def checkParkingSpace(imgProc):
    spaceCounter=0
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        
        if count < 950:
            color = (0,255,0)
            thickness = 5
            spaceCounter +=1
        else:
            color = (0,0,255)
            thickness = 2
        cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),color,thickness=thickness)
        cvzone.putTextRect(img,str(count),(x,y+height-5),scale =1.5,thickness=2,offset=0,colorR=color)
    cvzone.putTextRect(img,f'Free{spaceCounter}/{len(posList)}',(100,50),scale =3,thickness=5,offset=20,colorR=(0,200,0))
            
while True:
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
        cap.set(cv2.CAP_PROP_POS_FRAMES,0)
    
    success,img= cap.read()  
    imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)  
    imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)
    imgMedian = cv2.medianBlur(imgThreshold,5)
    kernel=np.ones((3,3),np.uint8);
    imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)
    checkParkingSpace(imgDilate)
    # for pos in posList:
    #     cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)
    cv2.imshow("Image",img)
    # cv2.imshow("imgBlur",imgBlur)
    # cv2.imshow("imgThreshold",imgThreshold)
    # cv2.imshow("imgMedian",imgMedian)
    # cv2.imshow("imgDilate",imgDilate)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

最终效果如下:

Python中使用Opencv开发停车位计数器功能

源码链接:https://github.com/yuanxinshui/Opencv-project/tree/main/39%20Parking%20Space%20Counter

到此这篇关于Python中使用Opencv开发停车位计数器的文章就介绍到这了,更多相关python Opencv停车位计数器内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用python实现生成用户信息
Mar 20 Python
python 3.6 tkinter+urllib+json实现火车车次信息查询功能
Dec 20 Python
Python爬虫工程师面试问题总结
Mar 22 Python
Python中XlsxWriter模块简介与用法分析
Apr 24 Python
Python 读取图片文件为矩阵和保存矩阵为图片的方法
Apr 27 Python
python3实现磁盘空间监控
Jun 21 Python
Python查找数组中数值和下标相等的元素示例【二分查找】
Feb 13 Python
python实现在cmd窗口显示彩色文字
Jun 24 Python
用Python获取摄像头并实时控制人脸的实现示例
Jul 11 Python
Python循环中else,break和continue的用法实例详解
Jul 11 Python
Python代码实现http/https代理服务器的脚本
Aug 12 Python
关于Python中的向量相加和numpy中的向量相加效率对比
Aug 26 Python
Python采集股票数据并制作可视化柱状图
python疲劳驾驶困倦低头检测功能的实现
Python实现自动玩连连看的脚本分享
Apr 04 #Python
Python利用Turtle绘制哆啦A梦和小猪佩奇
Python必备技巧之函数的使用详解
Python批量解压&压缩文件夹的示例代码
Apr 04 #Python
Python调用腾讯API实现人脸身份证比对功能
You might like
PHP仿博客园 个人博客(1) 数据库与界面设计
2013/07/05 PHP
thinkphp 一个页面使用2次分页的实现方法
2013/07/15 PHP
php字符串按照单词进行反转的方法
2015/03/14 PHP
PHP实现的统计数据功能详解
2016/12/06 PHP
php mysql实现mysql_select_db选择数据库
2016/12/30 PHP
ExtJs GridPanel简单的增删改实现代码
2010/08/26 Javascript
js切换光标示例代码
2013/10/10 Javascript
node.js中的http.createClient方法使用说明
2014/12/15 Javascript
基于JQuery打造无缝滚动新闻步骤详解
2016/03/31 Javascript
JS表格组件BootstrapTable行内编辑解决方案x-editable
2016/09/01 Javascript
bootstrapValidator bootstrap-select验证不可用的解决办法
2017/01/11 Javascript
Bootstrap模态框使用详解
2017/02/15 Javascript
Angular 4依赖注入学习教程之FactoryProvider配置依赖对象(五)
2017/06/04 Javascript
jQuery实现文字超过1行、2行或规定的行数时自动加省略号的方法
2018/03/28 jQuery
layer.open组件获取弹出层页面变量、函数的实例
2019/09/25 Javascript
vue中全局路由守卫中替代this操作(this.$store/this.$vux)
2020/07/24 Javascript
[02:58]献给西雅图的情书_高清
2014/05/29 DOTA
[04:52]第二届DOTA2亚洲邀请赛主赛事第一天比赛集锦:OG娜迦海妖放大配合谜团大中3人
2017/04/02 DOTA
python中的sort方法使用详解
2014/07/25 Python
Python实现把xml或xsl转换为html格式
2015/04/08 Python
python获取本机mac地址和ip地址的方法
2015/04/29 Python
简单理解Python中的装饰器
2015/07/31 Python
python开发之list操作实例分析
2016/02/22 Python
Python+Opencv识别两张相似图片
2020/03/23 Python
教你用Type Hint提高Python程序开发效率
2016/08/08 Python
基于python元祖与字典与集合的粗浅认识
2017/08/23 Python
vscode配置anaconda3的方法步骤
2020/08/08 Python
css3实现二维码扫描特效的示例
2020/10/29 HTML / CSS
Clearly新西兰:购买眼镜、太阳镜和隐形眼镜
2018/04/26 全球购物
应届毕业生就业自荐信
2013/10/26 职场文书
保护环境的建议书
2014/03/12 职场文书
基层党员学习党的群众路线教育实践活动心得体会
2014/11/04 职场文书
2015年机械设备管理工作总结
2015/05/04 职场文书
企业催款函范本
2015/06/24 职场文书
大学生支教感言
2015/08/01 职场文书
Html5生成验证码的示例代码
2021/05/10 Javascript