Python中使用Opencv开发停车位计数器功能


Posted in Python onApril 04, 2022

在这个项目中,我们将创建一个停车位计数器。我们会发现总共有多少辆车,以及有多少停车位是空的。关于本教程最好的一点是,我们将使用基本的图像处理技术来解决这个问题,没有使用机器学习、深度学习进行训练来识别。

1. 环境安装

1.1 安装并激活虚拟环境

python -m venv venv
cd venv\Scripts
.\activate.bat

1.2 python包安装

pip install opencv-python

2. 绘制停车位矩形框

2.1 导入停车场图片

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.imshow("image",img)

Python中使用Opencv开发停车位计数器功能

2.2 绘制矩形框 定位停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.rectangle(img,(50,192),(157,240),(255,0,255),2)  #坐标位置可以多次尝试确定
cv2.imshow("image",img)
cv2.waitKey(0)

Python中使用Opencv开发停车位计数器功能

可以看出,每个停车位的估计宽、高为:

width=107  # 157-102
height = 48 # 240 - 192

2.3 鼠标添加、删除停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
while True:
	img = cv2.imread("carParkImg.png")
	cv2.imshow("images",img)
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("images",mouseClick)
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

Python中使用Opencv开发停车位计数器功能

通过鼠标点击在任何位置添加矩形框,但当矩形框位置出错时,无法进行删除。因此通过添加鼠标右键的事件,删除错误的矩形框。

def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)

通过pickle.dump()保持保存鼠标点击的位置信息。

with open('CarParkPos','wb') as f:
	pickle.dump(posList,f)

通过pickle.load()加载保存好的位置信息,即在原有的停车位添加或删除停车位,而不是每一帧画面重新绘制。

with open('CarParkPos','wb') as f:
	posList = pickle.load(f)

完整代码如下:

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
try:
	with open('CarParkPos','rb') as f:
		posList = pickle.load(f)
except:
	posList = []
# posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)
	
	with open('CarParkPos','wb') as f:
		pickle.dump(posList,f)
while True:
	img = cv2.imread("carParkImg.png")
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("image",mouseClick)
	
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

3. 停车位视频分析

3. 1 停车监控视频

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
while True:
    success,img= cap.read()
    cv2.imshow("Image",img)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

视频时间比较短,为了让视频循环播放,添加如下代码:

if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
	cap.set(cv2.CAP_PROP_POS_FRAMES,0)
  • cv2.CAP_PROP_POS_FRAMES :视频播放当前帧
  • cv2.CAP_PROP_FRAME_COUNT :视频总帧数

即:当前视频播放到结尾时,重新播放

3. 2 截取停车位

截取停车位,回来对每个停车位进行图像处理,从而分析该停车位是否被占用

def checkParkingSpace():
    for pos in posList:
        x,y = pos
        imgCrop=img[y:y+height,x:x+width]
        cv2.imshow(str(x*y),imgCrop)

Python中使用Opencv开发停车位计数器功能

3. 3 图像处理

对图像二值化、高斯模糊处理

imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)

Python中使用Opencv开发停车位计数器功能

利用自适应二值化对图像进行处理

imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)

cv2.adaptiveThreshold 参数的选择可以通过TrackBar拖到滚动条,直到选择合适的数值。

Python中使用Opencv开发停车位计数器功能

可以看出停车位上有车辆时白色像素点比较多,停车位没有车辆时,白色像素点很少甚至没有,因此我们可以基于白色像素点数量来确定该车为是否被占用。同时可以看到当停车位为空时存在一些椒盐噪声,通过medianBlur来处理椒盐噪声

imgMedian = cv2.medianBlur(imgThreshold,5)

Python中使用Opencv开发停车位计数器功能

可以看出椒盐噪声少了一部分。
使用dilate(膨胀)增强白色像素值,便于更好区分每个停车位是否被占用

kernel=np.ones((3,3),np.uint8);
 imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)

Python中使用Opencv开发停车位计数器功能

可以看出白色的轮廓比之前加厚了

3. 4 判断停车位是否被占用

截取每个停车位,经过处理后的图像,统计白色像素的数量
修改checkParkingSpace函数,将处理好的图像传入函数

def checkParkingSpace(imgProc):
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        cvzone.putTextRect(img,str(count),(x,y+height-3,scale =1.5,thickness=2,offset=0)

Python中使用Opencv开发停车位计数器功能

对比可以看出,占有车位的数值比较大1000-2000,空车位的200-500,数值的差距比较大。

画出所有停车位,对比找出合适的阈值,区分停车位为空还是被占用了。

Python中使用Opencv开发停车位计数器功能

可以看出停车位为空时,值为0-600,而停车位被占用,值为:960-2300,因此我们设定阈值为750。所以低于750此时停车位没有车,高于950则停车位有车。

Python中使用Opencv开发停车位计数器功能

加上文字描述

代码

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
with open('CarParkPos','rb') as f:
    posList = pickle.load(f)
width,height=107,48
def checkParkingSpace(imgProc):
    spaceCounter=0
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        
        if count < 950:
            color = (0,255,0)
            thickness = 5
            spaceCounter +=1
        else:
            color = (0,0,255)
            thickness = 2
        cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),color,thickness=thickness)
        cvzone.putTextRect(img,str(count),(x,y+height-5),scale =1.5,thickness=2,offset=0,colorR=color)
    cvzone.putTextRect(img,f'Free{spaceCounter}/{len(posList)}',(100,50),scale =3,thickness=5,offset=20,colorR=(0,200,0))
            
while True:
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
        cap.set(cv2.CAP_PROP_POS_FRAMES,0)
    
    success,img= cap.read()  
    imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)  
    imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)
    imgMedian = cv2.medianBlur(imgThreshold,5)
    kernel=np.ones((3,3),np.uint8);
    imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)
    checkParkingSpace(imgDilate)
    # for pos in posList:
    #     cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)
    cv2.imshow("Image",img)
    # cv2.imshow("imgBlur",imgBlur)
    # cv2.imshow("imgThreshold",imgThreshold)
    # cv2.imshow("imgMedian",imgMedian)
    # cv2.imshow("imgDilate",imgDilate)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

最终效果如下:

Python中使用Opencv开发停车位计数器功能

源码链接:https://github.com/yuanxinshui/Opencv-project/tree/main/39%20Parking%20Space%20Counter

到此这篇关于Python中使用Opencv开发停车位计数器的文章就介绍到这了,更多相关python Opencv停车位计数器内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python的常见命令注入威胁
Feb 18 Python
关于你不想知道的所有Python3 unicode特性
Nov 28 Python
python合并同类型excel表格的方法
Apr 01 Python
python爬取网页内容转换为PDF文件
Jul 28 Python
python处理数据,存进hive表的方法
Jul 04 Python
Python多继承原理与用法示例
Aug 23 Python
python实现嵌套列表平铺的两种方法
Nov 08 Python
python实现求特征选择的信息增益
Dec 18 Python
Python实现统计英文文章词频的方法分析
Jan 28 Python
python中bs4.BeautifulSoup的基本用法
Jul 27 Python
Python assert语句的简单使用示例
Jul 28 Python
教你利用python实现企业微信发送消息
May 23 Python
Python采集股票数据并制作可视化柱状图
python疲劳驾驶困倦低头检测功能的实现
Python实现自动玩连连看的脚本分享
Apr 04 #Python
Python利用Turtle绘制哆啦A梦和小猪佩奇
Python必备技巧之函数的使用详解
Python批量解压&压缩文件夹的示例代码
Apr 04 #Python
Python调用腾讯API实现人脸身份证比对功能
You might like
Nginx环境下PHP flush失效的解决方法
2016/10/19 PHP
判断某个字符在一个字符串中是否存在的js代码
2014/02/28 Javascript
js闭包实例汇总
2014/11/09 Javascript
javascript实现回车键提交表单方法总结
2015/01/10 Javascript
jQuery实现美观的多级动画效果菜单代码
2015/09/06 Javascript
解决vue多个路由共用一个页面的问题
2018/03/12 Javascript
JavaScript实现轮播图效果代码实例
2019/09/28 Javascript
如何用JS模拟实现数组的map方法
2020/07/30 Javascript
JavaScript实现多球运动效果
2020/09/07 Javascript
[02:05]2014DOTA2西雅图邀请赛 老队长全明星大猜想谁不服就按进显示器
2014/07/08 DOTA
[39:00]Optic vs VP 2018国际邀请赛淘汰赛BO3 第三场 8.24
2018/08/25 DOTA
pydev使用wxpython找不到路径的解决方法
2013/02/10 Python
Python中有趣在__call__函数
2015/06/21 Python
python实现读取并显示图片的两种方法
2017/01/13 Python
详解 Python中LEGB和闭包及装饰器
2017/08/03 Python
Python实现合并同一个文件夹下所有txt文件的方法示例
2018/04/26 Python
Python获取昨天、今天、明天开始、结束时间戳的方法
2018/06/01 Python
TensorFlow数据输入的方法示例
2018/06/19 Python
Python使用scrapy爬取阳光热线问政平台过程解析
2019/08/14 Python
Tensorflow训练MNIST手写数字识别模型
2020/02/13 Python
python3 使用traceback定位异常实例
2020/03/09 Python
python利用appium实现手机APP自动化的示例
2021/01/26 Python
Adobe Html5 Extension开发初体验图文教程
2017/11/14 HTML / CSS
耐克美国官网:Nike.com
2016/08/01 全球购物
英国在线自行车店:Merlin Cycles
2018/08/20 全球购物
个人自我评价分享
2013/12/20 职场文书
秦兵马俑教学反思
2014/02/07 职场文书
伦敦奥运会的口号
2014/06/21 职场文书
党的群众路线教育实践活动对照检查材料
2014/09/22 职场文书
2015年党员自我剖析材料
2014/12/17 职场文书
个人工作年终总结
2015/03/09 职场文书
《扇形统计图》教学反思
2016/02/17 职场文书
毕业生自我鉴定范文
2019/05/13 职场文书
正确使用MySQL INSERT INTO语句
2021/05/26 MySQL
Nginx内网单机反向代理的实现
2021/11/07 Servers
Golang 字符串的常见操作
2022/04/19 Golang