MySQL 百万级数据的4种查询优化方式


Posted in MySQL onJune 07, 2021

一.limit越往后越慢的原因

当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:

select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25;

这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。

MySQL 百万级数据的4种查询优化方式

二.百万数据模拟

1、创建员工表和部门表,编写存储过程插数据

/*部门表,存在则进行删除 */
drop table if EXISTS dep;
create table dep(
    id int unsigned primary key auto_increment,
    depno mediumint unsigned not null default 0,
    depname varchar(20) not null default "",
    memo varchar(200) not null default ""
);

/*员工表,存在则进行删除*/
drop table if EXISTS emp;
create table emp(
    id int unsigned primary key auto_increment,
    empno mediumint unsigned not null default 0,
    empname varchar(20) not null default "",
    job varchar(9) not null default "",
    mgr mediumint unsigned not null default 0,
    hiredate datetime not null,
    sal decimal(7,2) not null,
    comn decimal(7,2) not null,
    depno mediumint unsigned not null default 0
);
/* 产生随机字符串的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_string;
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    SET i = i+1;
    END WHILE;
    RETURN return_str;
END $
DELIMITER;


/*产生随机部门编号的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_num;
CREATE FUNCTION rand_num() RETURNS INT(5)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(100+RAND()*10);
    RETURN i;
END $
DELIMITER;
/*建立存储过程:往emp表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_emp;
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    /*set autocommit =0 把autocommit设置成0,把默认提交关闭*/
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6),'SALEMAN',0001,now(),2000,400,rand_num());
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

/*建立存储过程:往dep表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_dept;
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i+1;
    INSERT  INTO dep( depno,depname,memo) VALUES((START+i),rand_string(10),rand_string(8));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

2.执行存储过程

/*插入120条数据*/
call insert_dept(1,120);
/*插入500W条数据*/
call insert_emp(0,5000000);

插入500万条数据可能很慢

三.4种查询方式

1.普通limit分页

/*偏移量为100,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
/*偏移量为4800000,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
受影响的行: 0
时间: 0.001s
[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;
受影响的行: 0
时间: 12.275s

越往后,查询效率越慢

2.使用索引覆盖+子查询优化

因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。

/*子查询获取偏移100条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;

/*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;
受影响的行: 0
时间: 0.106s

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;
受影响的行: 0
时间: 1.541s

3.起始位置重定义

适用于主键是自增主键的表

/*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;

/*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
受影响的行: 0
时间: 0.000s

这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。

4,降级策略(百度的做法)

这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页

以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注三水点靠木其它相关文章!

MySQL 相关文章推荐
mysql批量新增和存储的方法实例
Apr 07 MySQL
MySQL 使用索引扫描进行排序
Jun 20 MySQL
MySQL如何使用使用Xtrabackup进行备份和恢复
Jun 21 MySQL
MySQL的Query Cache图文详解
Jul 01 MySQL
MySQL分区表实现按月份归类
Nov 01 MySQL
MYSQL 运算符总结
Nov 11 MySQL
MySQL之MyISAM存储引擎的非聚簇索引详解
Mar 03 MySQL
Mysql超详细讲解死锁问题的理解
Apr 01 MySQL
mysql的Buffer Pool存储及原理
Apr 02 MySQL
优化Mysql查询的示例
Apr 26 MySQL
手把手带你彻底卸载MySQL数据库
Jun 14 MySQL
DQL数据查询语句使用示例
Dec 24 MySQL
MySQL 全文检索的使用示例
Jun 07 #MySQL
MySQL 常见的数据表设计误区汇总
Jun 07 #MySQL
浅谈MySQL next-key lock 加锁范围
MySQL为id选择合适的数据类型
MySQL单表千万级数据处理的思路分享
Jun 05 #MySQL
MySQL 时间类型的选择
Jun 05 #MySQL
MySQL索引失效的典型案例
Jun 05 #MySQL
You might like
详解PHP导入导出CSV文件
2014/11/03 PHP
Laravel 5框架学习之路由、控制器和视图简介
2015/04/07 PHP
CI框架使用composer安装的依赖包步骤与方法分析
2016/11/21 PHP
php设计模式之职责链模式实例分析【星际争霸游戏案例】
2020/03/27 PHP
使用JavaScript switch case 另类写法
2010/03/14 Javascript
jquery打开直接跳到网页最下面、最低端实现代码
2013/04/22 Javascript
javascript 四十条常用技巧大全
2016/09/09 Javascript
原生JS实现移动端web轮播图详解(结合Tween算法造轮子)
2017/09/10 Javascript
angular指令笔记ng-options的使用方法
2017/09/18 Javascript
微信小程序tabBar模板用法实例分析【附demo源码下载】
2017/11/28 Javascript
Angular 如何使用第三方库的方法
2018/04/18 Javascript
Vue 中mixin 的用法详解
2018/04/23 Javascript
微信小程序中遇到的iOS兼容性问题小结
2018/11/14 Javascript
详解将微信小程序接口Promise化并使用async函数
2019/08/05 Javascript
解决使用layui的时候form表单中的select等不能渲染的问题
2019/09/18 Javascript
JavaScript实现图片上传并预览并提交ajax
2019/09/30 Javascript
js仿360开机效果
2019/12/26 Javascript
html2canvas属性和使用方法以及如何使用html2canvas将HTML内容写入Canvas生成图片
2020/01/12 Javascript
JavaScript array常用方法代码实例详解
2020/09/02 Javascript
javascript前端实现多视频上传
2020/12/13 Javascript
py中的目录与文件判别代码
2008/07/16 Python
python print输出延时,让其立刻输出的方法
2019/01/07 Python
Python3.5 + sklearn利用SVM自动识别字母验证码方法示例
2019/05/10 Python
python实现截取屏幕保存文件,删除N天前截图的例子
2019/08/27 Python
RetroStage德国:复古服装
2019/02/03 全球购物
华为python面试题
2016/05/03 面试题
Set里的元素是不能重复的,那么用什么方法来区分重复与否呢?
2016/08/18 面试题
综合测评自我鉴定
2013/10/08 职场文书
教师学习培训邀请函
2014/02/04 职场文书
三分钟英语演讲稿
2014/04/24 职场文书
基层党员干部四风问题整改方向和措施
2014/09/25 职场文书
投诉书格式范本
2015/07/02 职场文书
2016消防宣传标语口号
2015/12/26 职场文书
带你了解CSS基础知识,样式
2021/07/21 HTML / CSS
低门槛开发iOS、Android、小程序应用的前端框架详解
2021/10/16 Javascript
Python中非常使用的6种基本变量的操作与技巧
2022/03/22 Python