MySQL 百万级数据的4种查询优化方式


Posted in MySQL onJune 07, 2021

一.limit越往后越慢的原因

当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:

select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25;

这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。

MySQL 百万级数据的4种查询优化方式

二.百万数据模拟

1、创建员工表和部门表,编写存储过程插数据

/*部门表,存在则进行删除 */
drop table if EXISTS dep;
create table dep(
    id int unsigned primary key auto_increment,
    depno mediumint unsigned not null default 0,
    depname varchar(20) not null default "",
    memo varchar(200) not null default ""
);

/*员工表,存在则进行删除*/
drop table if EXISTS emp;
create table emp(
    id int unsigned primary key auto_increment,
    empno mediumint unsigned not null default 0,
    empname varchar(20) not null default "",
    job varchar(9) not null default "",
    mgr mediumint unsigned not null default 0,
    hiredate datetime not null,
    sal decimal(7,2) not null,
    comn decimal(7,2) not null,
    depno mediumint unsigned not null default 0
);
/* 产生随机字符串的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_string;
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    SET i = i+1;
    END WHILE;
    RETURN return_str;
END $
DELIMITER;


/*产生随机部门编号的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_num;
CREATE FUNCTION rand_num() RETURNS INT(5)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(100+RAND()*10);
    RETURN i;
END $
DELIMITER;
/*建立存储过程:往emp表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_emp;
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    /*set autocommit =0 把autocommit设置成0,把默认提交关闭*/
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6),'SALEMAN',0001,now(),2000,400,rand_num());
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

/*建立存储过程:往dep表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_dept;
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i+1;
    INSERT  INTO dep( depno,depname,memo) VALUES((START+i),rand_string(10),rand_string(8));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

2.执行存储过程

/*插入120条数据*/
call insert_dept(1,120);
/*插入500W条数据*/
call insert_emp(0,5000000);

插入500万条数据可能很慢

三.4种查询方式

1.普通limit分页

/*偏移量为100,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
/*偏移量为4800000,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
受影响的行: 0
时间: 0.001s
[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;
受影响的行: 0
时间: 12.275s

越往后,查询效率越慢

2.使用索引覆盖+子查询优化

因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。

/*子查询获取偏移100条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;

/*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;
受影响的行: 0
时间: 0.106s

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;
受影响的行: 0
时间: 1.541s

3.起始位置重定义

适用于主键是自增主键的表

/*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;

/*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
受影响的行: 0
时间: 0.000s

这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。

4,降级策略(百度的做法)

这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页

以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注三水点靠木其它相关文章!

MySQL 相关文章推荐
MySQL Shell的介绍以及安装
Apr 24 MySQL
教你解决往mysql数据库中存入汉字报错的方法
May 06 MySQL
MySQL 使用自定义变量进行查询优化
May 14 MySQL
正确使用MySQL INSERT INTO语句
May 26 MySQL
Mysql文件存储图文详解
Jun 01 MySQL
浅谈MySQL user权限表
Jun 18 MySQL
python中的mysql数据库LIKE操作符详解
Jul 01 MySQL
MySQL窗口函数的具体使用
Nov 17 MySQL
delete in子查询不走索引问题分析
Jul 07 MySQL
MySQL的意向共享锁、意向排它锁和死锁
Jul 15 MySQL
MySQL中dd::columns表结构转table过程及应用详解
Sep 23 MySQL
Mysql如何查看是否使用到索引
Dec 24 MySQL
MySQL 全文检索的使用示例
Jun 07 #MySQL
MySQL 常见的数据表设计误区汇总
Jun 07 #MySQL
浅谈MySQL next-key lock 加锁范围
MySQL为id选择合适的数据类型
MySQL单表千万级数据处理的思路分享
Jun 05 #MySQL
MySQL 时间类型的选择
Jun 05 #MySQL
MySQL索引失效的典型案例
Jun 05 #MySQL
You might like
什么是短波收听SWL
2021/03/01 无线电
PHP 数组实例说明
2008/08/18 PHP
PHP中利用substr_replace将指定两位置之间的字符替换为*号
2011/01/27 PHP
PHP 常用数组内部函数(Array Functions)介绍
2013/06/05 PHP
php中AES加密解密的例子小结
2014/02/18 PHP
PHP如何使用array_unshift()在数组开头插入元素
2020/09/01 PHP
jquery的Theme和Theme Switcher使用小结
2010/09/08 Javascript
Web 前端设计模式--Dom重构 提高显示性能
2010/10/22 Javascript
html中使用javascript调用本地程序(exe、doc等)实现代码
2013/04/26 Javascript
javascript实现playfair和hill密码算法
2014/12/07 Javascript
jQuery将所有被选中的checkbox某个属性值连接成字符串的方法
2015/01/24 Javascript
跟我学习javascript的全局变量
2015/11/16 Javascript
jQuery实现文本框邮箱输入自动补全效果
2015/11/17 Javascript
基于Bootstrap实现tab标签切换效果
2020/04/15 Javascript
JS之相等操作符详解
2016/09/13 Javascript
jQuery简单获取DIV和A标签元素位置的方法
2017/02/07 Javascript
Vue.set()实现数据动态响应的方法
2018/02/07 Javascript
详解webpack4升级指南以及从webpack3.x迁移
2018/06/12 Javascript
javascript和php使用ajax通信传递JSON的实例
2018/08/21 Javascript
angularjs模态框的使用代码实例
2019/12/20 Javascript
浅谈vuex为什么不建议在action中修改state
2020/02/02 Javascript
Python实现端口复用实例代码
2014/07/03 Python
python获得两个数组交集、并集、差集的方法
2015/03/27 Python
Django如何配置mysql数据库
2018/05/04 Python
Django开发中的日志输出的方法
2018/07/02 Python
python 提取key 为中文的json 串方法
2018/12/31 Python
Python 求数组局部最大值的实例
2019/11/26 Python
python调用c++返回带成员指针的类指针实例
2019/12/12 Python
护理学中专毕业生求职信
2013/11/11 职场文书
单位一把手群众路线四风问题整改措施
2014/09/25 职场文书
2014年保管员工作总结
2014/11/18 职场文书
2014年党委工作总结
2014/11/22 职场文书
实习生个人总结范文
2015/02/28 职场文书
博士生专家推荐信
2015/03/25 职场文书
创业计划书之校园跑腿公司
2019/09/24 职场文书
css3实现的加载动画效果
2021/04/07 HTML / CSS