MySQL 百万级数据的4种查询优化方式


Posted in MySQL onJune 07, 2021

一.limit越往后越慢的原因

当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:

select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25;

这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。

MySQL 百万级数据的4种查询优化方式

二.百万数据模拟

1、创建员工表和部门表,编写存储过程插数据

/*部门表,存在则进行删除 */
drop table if EXISTS dep;
create table dep(
    id int unsigned primary key auto_increment,
    depno mediumint unsigned not null default 0,
    depname varchar(20) not null default "",
    memo varchar(200) not null default ""
);

/*员工表,存在则进行删除*/
drop table if EXISTS emp;
create table emp(
    id int unsigned primary key auto_increment,
    empno mediumint unsigned not null default 0,
    empname varchar(20) not null default "",
    job varchar(9) not null default "",
    mgr mediumint unsigned not null default 0,
    hiredate datetime not null,
    sal decimal(7,2) not null,
    comn decimal(7,2) not null,
    depno mediumint unsigned not null default 0
);
/* 产生随机字符串的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_string;
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    SET i = i+1;
    END WHILE;
    RETURN return_str;
END $
DELIMITER;


/*产生随机部门编号的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_num;
CREATE FUNCTION rand_num() RETURNS INT(5)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(100+RAND()*10);
    RETURN i;
END $
DELIMITER;
/*建立存储过程:往emp表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_emp;
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    /*set autocommit =0 把autocommit设置成0,把默认提交关闭*/
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6),'SALEMAN',0001,now(),2000,400,rand_num());
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

/*建立存储过程:往dep表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_dept;
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i+1;
    INSERT  INTO dep( depno,depname,memo) VALUES((START+i),rand_string(10),rand_string(8));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

2.执行存储过程

/*插入120条数据*/
call insert_dept(1,120);
/*插入500W条数据*/
call insert_emp(0,5000000);

插入500万条数据可能很慢

三.4种查询方式

1.普通limit分页

/*偏移量为100,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
/*偏移量为4800000,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
受影响的行: 0
时间: 0.001s
[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;
受影响的行: 0
时间: 12.275s

越往后,查询效率越慢

2.使用索引覆盖+子查询优化

因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。

/*子查询获取偏移100条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;

/*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;
受影响的行: 0
时间: 0.106s

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;
受影响的行: 0
时间: 1.541s

3.起始位置重定义

适用于主键是自增主键的表

/*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;

/*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
受影响的行: 0
时间: 0.000s

这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。

4,降级策略(百度的做法)

这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页

以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注三水点靠木其它相关文章!

MySQL 相关文章推荐
MySQL创建索引需要了解的
Apr 08 MySQL
详解Mysql和Oracle之间的误区
May 18 MySQL
mysql中between的边界,范围说明
Jun 08 MySQL
Mysql 如何查询时间段交集
Jun 08 MySQL
MySQL中连接查询和子查询的问题
Sep 04 MySQL
浅谈MySql整型索引和字符串索引失效或隐式转换问题
Nov 20 MySQL
如何避免mysql启动时错误及sock文件作用分析
Jan 22 MySQL
mysql自增长id用完了该怎么办
Feb 12 MySQL
解析MySQL索引的作用
Mar 03 MySQL
mysql 体系结构和存储引擎介绍
May 06 MySQL
MySQL中JOIN连接的基本用法实例
Jun 05 MySQL
MySQL存储过程及语法详解
Aug 05 MySQL
MySQL 全文检索的使用示例
Jun 07 #MySQL
MySQL 常见的数据表设计误区汇总
Jun 07 #MySQL
浅谈MySQL next-key lock 加锁范围
MySQL为id选择合适的数据类型
MySQL单表千万级数据处理的思路分享
Jun 05 #MySQL
MySQL 时间类型的选择
Jun 05 #MySQL
MySQL索引失效的典型案例
Jun 05 #MySQL
You might like
Yii使用find findAll查找出指定字段的实现方法
2014/09/05 PHP
ThinkPHP基于PHPExcel导入Excel文件的方法
2014/10/15 PHP
javascript学习笔记(十七) 检测浏览器插件代码
2012/06/20 Javascript
JS中for循序中延迟加载动态效果的具体实现
2013/08/18 Javascript
JS执行删除前的判断代码
2014/02/18 Javascript
js实现按Ctrl+Enter发送效果
2014/09/18 Javascript
浅谈js内置对象Math的属性和方法(推荐)
2016/09/19 Javascript
BootStrap modal模态弹窗使用小结
2016/10/26 Javascript
Vue.js开发环境搭建
2016/11/10 Javascript
AngularJS封装指令方法详解
2016/12/12 Javascript
js闭包用法实例详解
2016/12/13 Javascript
js实现选项卡内容切换以及折叠和展开效果【推荐】
2017/01/08 Javascript
vue-cli创建的项目,配置多页面的实现方法
2018/03/15 Javascript
JS面向对象的程序设计相关知识小结
2018/05/26 Javascript
深入理解Promise.all
2018/08/08 Javascript
vue实现分页组件
2020/06/16 Javascript
JS实现鼠标按下拖拽效果
2020/07/23 Javascript
React实现评论的添加和删除
2020/10/20 Javascript
让python同时兼容python2和python3的8个技巧分享
2014/07/11 Python
python自定义解析简单xml格式文件的方法
2015/05/11 Python
python DataFrame转dict字典过程详解
2019/12/26 Python
python求最大公约数和最小公倍数的简单方法
2020/02/13 Python
python 生成任意形状的凸包图代码
2020/04/16 Python
初学者学习Python好还是Java好
2020/05/26 Python
详解anaconda安装步骤
2020/11/23 Python
html5 canvas 实现光线沿不规则路径运动
2020/04/20 HTML / CSS
法国在线药房:1001Pharmacies
2021/03/07 全球购物
物流司机岗位职责
2013/12/28 职场文书
中学运动会广播稿
2014/01/19 职场文书
人民教师求职自荐信
2014/03/12 职场文书
优秀求职信
2014/05/29 职场文书
大学活动总结模板
2014/07/10 职场文书
诚实守信道德模范事迹材料
2014/08/15 职场文书
二审答辩状格式
2015/05/22 职场文书
分析mysql中一条SQL查询语句是如何执行的
2021/06/21 MySQL
Win11怎么进入安全模式?Windows 11进入安全模式的方法
2021/11/21 数码科技