MySQL 百万级数据的4种查询优化方式


Posted in MySQL onJune 07, 2021

一.limit越往后越慢的原因

当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:

select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25;

这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。

MySQL 百万级数据的4种查询优化方式

二.百万数据模拟

1、创建员工表和部门表,编写存储过程插数据

/*部门表,存在则进行删除 */
drop table if EXISTS dep;
create table dep(
    id int unsigned primary key auto_increment,
    depno mediumint unsigned not null default 0,
    depname varchar(20) not null default "",
    memo varchar(200) not null default ""
);

/*员工表,存在则进行删除*/
drop table if EXISTS emp;
create table emp(
    id int unsigned primary key auto_increment,
    empno mediumint unsigned not null default 0,
    empname varchar(20) not null default "",
    job varchar(9) not null default "",
    mgr mediumint unsigned not null default 0,
    hiredate datetime not null,
    sal decimal(7,2) not null,
    comn decimal(7,2) not null,
    depno mediumint unsigned not null default 0
);
/* 产生随机字符串的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_string;
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    SET i = i+1;
    END WHILE;
    RETURN return_str;
END $
DELIMITER;


/*产生随机部门编号的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_num;
CREATE FUNCTION rand_num() RETURNS INT(5)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(100+RAND()*10);
    RETURN i;
END $
DELIMITER;
/*建立存储过程:往emp表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_emp;
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    /*set autocommit =0 把autocommit设置成0,把默认提交关闭*/
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6),'SALEMAN',0001,now(),2000,400,rand_num());
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

/*建立存储过程:往dep表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_dept;
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i+1;
    INSERT  INTO dep( depno,depname,memo) VALUES((START+i),rand_string(10),rand_string(8));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

2.执行存储过程

/*插入120条数据*/
call insert_dept(1,120);
/*插入500W条数据*/
call insert_emp(0,5000000);

插入500万条数据可能很慢

三.4种查询方式

1.普通limit分页

/*偏移量为100,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
/*偏移量为4800000,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
受影响的行: 0
时间: 0.001s
[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;
受影响的行: 0
时间: 12.275s

越往后,查询效率越慢

2.使用索引覆盖+子查询优化

因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。

/*子查询获取偏移100条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;

/*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;
受影响的行: 0
时间: 0.106s

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;
受影响的行: 0
时间: 1.541s

3.起始位置重定义

适用于主键是自增主键的表

/*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;

/*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
受影响的行: 0
时间: 0.000s

这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。

4,降级策略(百度的做法)

这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页

以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注三水点靠木其它相关文章!

MySQL 相关文章推荐
MySQL 使用SQL语句修改表名的实现
Apr 07 MySQL
MySQL索引知识的一些小妙招总结
May 10 MySQL
SQL注入的实现以及防范示例详解
Jun 02 MySQL
MySQL快速插入一亿测试数据
Jun 23 MySQL
SQL实现LeetCode(176.第二高薪水)
Aug 04 MySQL
MySQL中datetime时间字段的四舍五入操作
Oct 05 MySQL
MySQL笔记 —SQL运算符
Jan 18 MySQL
mysql sum(if())和count(if())的用法说明
Jan 18 MySQL
WINDOWS 64位 下安装配置mysql8.0.25最详细的教程
Mar 22 MySQL
CentOS MySql8 远程连接实战
Apr 19 MySQL
Mysql InnoDB 的内存逻辑架构
May 06 MySQL
Mysql中常用的join连接方式
May 11 MySQL
MySQL 全文检索的使用示例
Jun 07 #MySQL
MySQL 常见的数据表设计误区汇总
Jun 07 #MySQL
浅谈MySQL next-key lock 加锁范围
MySQL为id选择合适的数据类型
MySQL单表千万级数据处理的思路分享
Jun 05 #MySQL
MySQL 时间类型的选择
Jun 05 #MySQL
MySQL索引失效的典型案例
Jun 05 #MySQL
You might like
解决PHP mysql_query执行超时(Fatal error: Maximum execution time …)
2013/07/03 PHP
phpstrom使用xdebug配置方法
2013/12/17 PHP
PHP学习笔记之php文件操作
2016/06/03 PHP
PHP静态成员变量和非静态成员变量详解
2017/02/14 PHP
PHP设计模式之建造者模式(Builder)原理与用法案例详解
2019/12/12 PHP
JavaScript 获取用户客户端操作系统版本
2009/08/25 Javascript
JavaScript 入门基础知识 想学习js的朋友可以参考下
2009/12/26 Javascript
RequireJS多页面应用实例分析
2016/06/29 Javascript
angular实现IM聊天图片发送实例
2017/05/08 Javascript
Vue 2.0学习笔记之Vue中的computed属性
2017/10/16 Javascript
vue toggle做一个点击切换class(实例讲解)
2018/03/13 Javascript
Node.js使用cookie保持登录的方法
2018/05/11 Javascript
JS面试题大坑之隐式类型转换实例代码
2018/10/14 Javascript
JavaScript switch语句使用方法简介
2019/12/30 Javascript
windows系统中python使用rar命令压缩多个文件夹示例
2014/05/06 Python
python实现简单socket通信的方法
2016/04/19 Python
python生成以及打开json、csv和txt文件的实例
2018/11/16 Python
Python面向对象基础入门之设置对象属性
2018/12/11 Python
python selenium 弹出框处理的实现
2019/02/26 Python
Python合并同一个文件夹下所有PDF文件的方法
2019/03/11 Python
新建文件时Pycharm中自动设置头部模板信息的方法
2020/04/17 Python
Python Flask框架实现简单加法工具过程解析
2020/06/03 Python
Python库安装速度过慢解决方案
2020/07/14 Python
英国轻奢珠宝品牌:Astley Clarke
2016/12/18 全球购物
科颜氏美国官网:Kiehl’s美国
2017/01/31 全球购物
SQL Server面试题
2013/04/04 面试题
西部世纪面试题
2014/12/05 面试题
《晏子使楚》教学反思
2014/02/08 职场文书
IT工程师岗位职责
2014/07/04 职场文书
公司的门卫岗位职责
2014/09/09 职场文书
装饰技术负责人岗位职责
2015/04/13 职场文书
转正申请报告格式
2015/05/15 职场文书
谢师宴家长致辞
2015/07/27 职场文书
护士旷工检讨书
2015/08/15 职场文书
体育委员竞选稿
2015/11/21 职场文书
Python学习之迭代器详解
2022/04/01 Python