用Python 爬取猫眼电影数据分析《无名之辈》


Posted in Python onJuly 24, 2020

前言

作者: 罗昭成

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

获取猫眼接口数据

作为一个长期宅在家的程序员,对各种抓包简直是信手拈来。在 Chrome 中查看原代码的模式,可以很清晰地看到接口,接口地址即为:http://m.maoyan.com/mmdb/comments/movie/1208282.json?_v_=yes&offset=15

在 Python 中,我们可以很方便地使用 request 来发送网络请求,进而拿到返回结果:

def getMoveinfo(url):
 session = requests.Session()
 headers = {
  "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X)"
 }
 response = session.get(url, headers=headers)
 if response.status_code == 200:
  return response.text
 return None

根据上面的请求,我们能拿到此接口的返回数据,数据内容有很多信息,但有很多信息是我们并不需要的,先来总体看看返回的数据:

{
 "cmts":[
  {
   "approve":0,
   "approved":false,
   "assistAwardInfo":{
    "avatar":"",
    "celebrityId":0,
    "celebrityName":"",
    "rank":0,
    "title":""
   },
   "authInfo":"",
   "cityName":"贵阳",
   "content":"必须十分,借钱都要看的一部电影。",
   "filmView":false,
   "id":1045570589,
   "isMajor":false,
   "juryLevel":0,
   "majorType":0,
   "movieId":1208282,
   "nick":"nick",
   "nickName":"nickName",
   "oppose":0,
   "pro":false,
   "reply":0,
   "score":5,
   "spoiler":0,
   "startTime":"2018-11-22 23:52:58",
   "supportComment":true,
   "supportLike":true,
   "sureViewed":1,
   "tagList":{
    "fixed":[
     {
      "id":1,
      "name":"好评"
     },
     {
      "id":4,
      "name":"购票"
     }
    ]
   },
   "time":"2018-11-22 23:52",
   "userId":1871534544,
   "userLevel":2,
   "videoDuration":0,
   "vipInfo":"",
   "vipType":0
  }
 ]
}
​

如此多的数据,我们感兴趣的只有以下这几个字段:

nickName, cityName, content, startTime, score

接下来,进行我们比较重要的数据处理,从拿到的 JSON 数据中解析出需要的字段:

def parseInfo(data):
 data = json.loads(html)['cmts']
 for item in data:
  yield{
   'date':item['startTime'],
   'nickname':item['nickName'],
   'city':item['cityName'],
   'rate':item['score'],
   'conment':item['content']
  }

拿到数据后,我们就可以开始数据分析了。但是为了避免频繁地去猫眼请求数据,需要将数据存储起来,在这里,笔者使用的是 SQLite3,放到数据库中,更加方便后续的处理。存储数据的代码如下:

def saveCommentInfo(moveId, nikename, comment, rate, city, start_time)
 conn = sqlite3.connect('unknow_name.db')
 conn.text_factory=str
 cursor = conn.cursor()
 ins="insert into comments values (?,?,?,?,?,?)"
 v = (moveId, nikename, comment, rate, city, start_time)
 cursor.execute(ins,v)
 cursor.close()
 conn.commit()
 conn.close()

数据处理

因为前文我们是使用数据库来进行数据存储的,因此可以直接使用 SQL 来查询自己想要的结果,比如评论前五的城市都有哪些:

SELECT city, count(*) rate_count FROM comments GROUP BY city ORDER BY rate_count DESC LIMIT 5

结果如下:

用Python 爬取猫眼电影数据分析《无名之辈》

从上面的数据, 我们可以看出来,来自北京的评论数最多。

不仅如此,还可以使用更多的 SQL 语句来查询想要的结果。比如每个评分的人数、所占的比例等。如笔者有兴趣,可以尝试着去查询一下数据,就是如此地简单。

而为了更好地展示数据,我们使用 Pyecharts 这个库来进行数据可视化展示。

根据从猫眼拿到的数据,按照地理位置,直接使用 Pyecharts 来在中国地图上展示数据:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
city = data.groupby(['city'])
city_com = city['rate'].agg(['mean','count'])
city_com.reset_index(inplace=True)
data_map = [(city_com['city'][i],city_com['count'][i]) for i in range(0,city_com.shape[0])]
geo = Geo("GEO 地理位置分析",title_pos = "center",width = 1200,height = 800)
while True:
 try:
  attr,val = geo.cast(data_map)
  geo.add("",attr,val,visual_range=[0,300],visual_text_color="#fff",
    symbol_size=10, is_visualmap=True,maptype='china')
​
 except ValueError as e:
  e = e.message.split("No coordinate is specified for ")[1]
  data_map = filter(lambda item: item[0] != e, data_map)
 else :
  break
geo.render('geo_city_location.html')

注:使用 Pyecharts 提供的数据地图中,有一些猫眼数据中的城市找不到对应的从标,所以在代码中,GEO 添加出错的城市,我们将其直接删除,过滤掉了不少的数据。

使用 Python,就是如此简单地生成了如下地图:

用Python 爬取猫眼电影数据分析《无名之辈》

从可视化数据中可以看出,既看电影又评论的人群主要分布在中国东部,又以北京、上海、成都、深圳最多。虽然能从图上看出来很多数据,但还是不够直观,如果想看到每个省/市的分布情况,我们还需要进一步处理数据。

而在从猫眼中拿到的数据中,城市包含数据中具备县城的数据,所以需要将拿到的数据做一次转换,将所有的县城转换到对应省市里去,然后再将同一个省市的评论数量相加,得到最后的结果。

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
city = data.groupby(['city'])
city_com = city['rate'].agg(['mean','count'])
city_com.reset_index(inplace=True)
fo = open("citys.json",'r')
citys_info = fo.readlines()
citysJson = json.loads(str(citys_info[0]))
data_map_all = [(getRealName(city_com['city'][i], citysJson),city_com['count'][i]) for i in range(0,city_com.shape[0])]
data_map_list = {}
for item in data_map_all:
 if data_map_list.has_key(item[0]):
  value = data_map_list[item[0]]
  value += item[1]
  data_map_list[item[0]] = value
 else:
  data_map_list[item[0]] = item[1]
data_map = [(realKeys(key), data_map_list[key] ) for key in data_map_list.keys()]
def getRealName(name, jsonObj):
 for item in jsonObj:
  if item.startswith(name) :
   return jsonObj[item]
 return name
def realKeys(name):
 return name.replace(u"省", "").replace(u"市", "")
    .replace(u"回族自治区", "").replace(u"维吾尔自治区", "")
    .replace(u"壮族自治区", "").replace(u"自治区", "")

经过上面的数据处理,使用 Pyecharts 提供的 map 来生成一个按省/市来展示的地图:

def generateMap(data_map):
 map = Map("城市评论数", width= 1200, height = 800, title_pos="center")
 while True:
  try:
   attr,val = geo.cast(data_map)
   map.add("",attr,val,visual_range=[0,800],
     visual_text_color="#fff",symbol_size=5,
     is_visualmap=True,maptype='china',
     is_map_symbol_show=False,is_label_show=True,is_roam=False,
     )
  except ValueError as e:
   e = e.message.split("No coordinate is specified for ")[1]
   data_map = filter(lambda item: item[0] != e, data_map)
  else :
   break
 map.render('city_rate_count.html')

用Python 爬取猫眼电影数据分析《无名之辈》

当然,我们还可以来可视化一下每一个评分的人数,这个地方采用柱状图来显示:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
# 按评分分类
rateData = data.groupby(['rate'])
rateDataCount = rateData["date"].agg([ "count"])
rateDataCount.reset_index(inplace=True)
count = rateDataCount.shape[0] - 1
attr = [rateDataCount["rate"][count - i] for i in range(0, rateDataCount.shape[0])]
v1 = [rateDataCount["count"][count - i] for i in range(0, rateDataCount.shape[0])]
bar = Bar("评分数量")
bar.add("数量",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2,
  xaxis_interval=0,is_splitline_show=True)
bar.render("html/rate_count.html")

画出来的图,如下所示,在猫眼的数据中,五星好评的占比超过了 50%,比豆瓣上 34.8% 的五星数据好很多。

用Python 爬取猫眼电影数据分析《无名之辈》

从以上观众分布和评分的数据可以看到,这一部剧,观众朋友还是非常地喜欢。前面,从猫眼拿到了观众的评论数据。现在,笔者将通过 jieba 把评论进行分词,然后通过 Wordcloud 制作词云,来看看,观众朋友们对《无名之辈》的整体评价:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
comment = jieba.cut(str(data['comment']),cut_all=False)
wl_space_split = " ".join(comment)
backgroudImage = np.array(Image.open(r"./unknow_3.png"))
stopword = STOPWORDS.copy()
wc = WordCloud(width=1920,height=1080,background_color='white',
 mask=backgroudImage,
 font_path="./Deng.ttf",
 stopwords=stopword,max_font_size=400,
 random_state=50)
wc.generate_from_text(wl_space_split)
plt.imshow(wc)
plt.axis("off")
wc.to_file('unknow_word_cloud.png')

导出:

用Python 爬取猫眼电影数据分析《无名之辈》 .

到此这篇关于用Python 爬取猫眼电影数据分析《无名之辈》的文章就介绍到这了,更多相关Python 爬取猫眼电影数据分析《无名之辈》内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python批量提交沙箱问题实例
Oct 08 Python
Python读取环境变量的方法和自定义类分享
Nov 22 Python
简单的python后台管理程序
Apr 13 Python
解决Linux系统中python matplotlib画图的中文显示问题
Jun 15 Python
python检索特定内容的文本文件实例
Jun 05 Python
python爬取个性签名的方法
Jun 17 Python
详解python pandas 分组统计的方法
Jul 30 Python
pyqt5 QScrollArea设置在自定义侧(任何位置)
Sep 25 Python
Python Django中的STATIC_URL 设置和使用方式
Mar 27 Python
如何实现更换Jupyter Notebook内核Python版本
May 18 Python
python判断变量是否为列表的方法
Sep 17 Python
Python实现随机生成迷宫并自动寻路
Jun 13 Python
基于Python实现简单学生管理系统
Jul 24 #Python
用python实现学生管理系统
Jul 24 #Python
Python 解析简单的XML数据
Jul 24 #Python
深入了解NumPy 高级索引
Jul 24 #Python
python实现学生管理系统开发
Jul 24 #Python
浅析Python 多行匹配模式
Jul 24 #Python
Python图像处理二值化方法实例汇总
Jul 24 #Python
You might like
PHP 内存缓存加速功能memcached安装与用法
2009/09/03 PHP
yii2整合百度编辑器umeditor及umeditor图片上传问题的解决办法
2016/04/20 PHP
基于PHP实现通过照片获取ip地址
2016/04/26 PHP
laravel框架中间件 except 和 only 的用法示例
2019/07/12 PHP
JavaScript初学者需要了解10个小技巧
2010/08/25 Javascript
js获取视频时长代码
2014/04/10 Javascript
使用原生js写的一个简单slider
2014/04/29 Javascript
jQuery实现仿QQ空间装扮预览图片的鼠标提示效果代码
2015/10/30 Javascript
Adapter适配器模式在JavaScript设计模式编程中的运用分析
2016/05/18 Javascript
layer弹出层框架alert与msg详解
2017/03/14 Javascript
对node.js中render和send的用法详解
2018/05/14 Javascript
微信小程序自定义轮播图
2018/11/04 Javascript
详解vue2.0 资源文件assets和static的区别
2018/11/27 Javascript
微信小程序利用swiper+css实现购物车商品删除功能
2019/03/06 Javascript
JS如何实现网站中PC端和手机端自动识别并跳转对应的代码
2020/01/08 Javascript
Element Popover 弹出框的使用示例
2020/07/26 Javascript
python模拟登陆Tom邮箱示例分享
2014/01/13 Python
Python字符串处理函数简明总结
2015/04/13 Python
两个命令把 Vim 打造成 Python IDE的方法
2016/03/20 Python
Python模拟鼠标点击实现方法(将通过实例自动化模拟在360浏览器中自动搜索python)
2017/08/23 Python
python文本数据相似度的度量
2018/03/12 Python
Python图像处理模块ndimage用法实例分析
2019/09/05 Python
Python range、enumerate和zip函数用法详解
2019/09/11 Python
PyCharm中关于安装第三方包的三个建议
2020/09/17 Python
详解Canvas 实现炫丽的粒子运动效果(粒子生成文字)
2018/02/01 HTML / CSS
美国最受欢迎的度假目的地优惠套餐:BookVIP
2018/09/27 全球购物
住宅质量保证书
2014/04/29 职场文书
派出所所长先进事迹
2014/05/19 职场文书
环境保护与污染治理求职信
2014/07/16 职场文书
就业协议书
2014/09/12 职场文书
2014年学习部工作总结
2014/11/12 职场文书
2015元旦家电促销活动策划方案
2014/12/09 职场文书
小班下学期个人总结
2015/02/12 职场文书
大学生活感想
2015/08/10 职场文书
超越Nginx的Web服务器caddy优雅用法
2022/06/21 Servers
JS前端canvas交互实现拖拽旋转及缩放示例
2022/08/05 Javascript