用Python 爬取猫眼电影数据分析《无名之辈》


Posted in Python onJuly 24, 2020

前言

作者: 罗昭成

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

获取猫眼接口数据

作为一个长期宅在家的程序员,对各种抓包简直是信手拈来。在 Chrome 中查看原代码的模式,可以很清晰地看到接口,接口地址即为:http://m.maoyan.com/mmdb/comments/movie/1208282.json?_v_=yes&offset=15

在 Python 中,我们可以很方便地使用 request 来发送网络请求,进而拿到返回结果:

def getMoveinfo(url):
 session = requests.Session()
 headers = {
  "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X)"
 }
 response = session.get(url, headers=headers)
 if response.status_code == 200:
  return response.text
 return None

根据上面的请求,我们能拿到此接口的返回数据,数据内容有很多信息,但有很多信息是我们并不需要的,先来总体看看返回的数据:

{
 "cmts":[
  {
   "approve":0,
   "approved":false,
   "assistAwardInfo":{
    "avatar":"",
    "celebrityId":0,
    "celebrityName":"",
    "rank":0,
    "title":""
   },
   "authInfo":"",
   "cityName":"贵阳",
   "content":"必须十分,借钱都要看的一部电影。",
   "filmView":false,
   "id":1045570589,
   "isMajor":false,
   "juryLevel":0,
   "majorType":0,
   "movieId":1208282,
   "nick":"nick",
   "nickName":"nickName",
   "oppose":0,
   "pro":false,
   "reply":0,
   "score":5,
   "spoiler":0,
   "startTime":"2018-11-22 23:52:58",
   "supportComment":true,
   "supportLike":true,
   "sureViewed":1,
   "tagList":{
    "fixed":[
     {
      "id":1,
      "name":"好评"
     },
     {
      "id":4,
      "name":"购票"
     }
    ]
   },
   "time":"2018-11-22 23:52",
   "userId":1871534544,
   "userLevel":2,
   "videoDuration":0,
   "vipInfo":"",
   "vipType":0
  }
 ]
}
​

如此多的数据,我们感兴趣的只有以下这几个字段:

nickName, cityName, content, startTime, score

接下来,进行我们比较重要的数据处理,从拿到的 JSON 数据中解析出需要的字段:

def parseInfo(data):
 data = json.loads(html)['cmts']
 for item in data:
  yield{
   'date':item['startTime'],
   'nickname':item['nickName'],
   'city':item['cityName'],
   'rate':item['score'],
   'conment':item['content']
  }

拿到数据后,我们就可以开始数据分析了。但是为了避免频繁地去猫眼请求数据,需要将数据存储起来,在这里,笔者使用的是 SQLite3,放到数据库中,更加方便后续的处理。存储数据的代码如下:

def saveCommentInfo(moveId, nikename, comment, rate, city, start_time)
 conn = sqlite3.connect('unknow_name.db')
 conn.text_factory=str
 cursor = conn.cursor()
 ins="insert into comments values (?,?,?,?,?,?)"
 v = (moveId, nikename, comment, rate, city, start_time)
 cursor.execute(ins,v)
 cursor.close()
 conn.commit()
 conn.close()

数据处理

因为前文我们是使用数据库来进行数据存储的,因此可以直接使用 SQL 来查询自己想要的结果,比如评论前五的城市都有哪些:

SELECT city, count(*) rate_count FROM comments GROUP BY city ORDER BY rate_count DESC LIMIT 5

结果如下:

用Python 爬取猫眼电影数据分析《无名之辈》

从上面的数据, 我们可以看出来,来自北京的评论数最多。

不仅如此,还可以使用更多的 SQL 语句来查询想要的结果。比如每个评分的人数、所占的比例等。如笔者有兴趣,可以尝试着去查询一下数据,就是如此地简单。

而为了更好地展示数据,我们使用 Pyecharts 这个库来进行数据可视化展示。

根据从猫眼拿到的数据,按照地理位置,直接使用 Pyecharts 来在中国地图上展示数据:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
city = data.groupby(['city'])
city_com = city['rate'].agg(['mean','count'])
city_com.reset_index(inplace=True)
data_map = [(city_com['city'][i],city_com['count'][i]) for i in range(0,city_com.shape[0])]
geo = Geo("GEO 地理位置分析",title_pos = "center",width = 1200,height = 800)
while True:
 try:
  attr,val = geo.cast(data_map)
  geo.add("",attr,val,visual_range=[0,300],visual_text_color="#fff",
    symbol_size=10, is_visualmap=True,maptype='china')
​
 except ValueError as e:
  e = e.message.split("No coordinate is specified for ")[1]
  data_map = filter(lambda item: item[0] != e, data_map)
 else :
  break
geo.render('geo_city_location.html')

注:使用 Pyecharts 提供的数据地图中,有一些猫眼数据中的城市找不到对应的从标,所以在代码中,GEO 添加出错的城市,我们将其直接删除,过滤掉了不少的数据。

使用 Python,就是如此简单地生成了如下地图:

用Python 爬取猫眼电影数据分析《无名之辈》

从可视化数据中可以看出,既看电影又评论的人群主要分布在中国东部,又以北京、上海、成都、深圳最多。虽然能从图上看出来很多数据,但还是不够直观,如果想看到每个省/市的分布情况,我们还需要进一步处理数据。

而在从猫眼中拿到的数据中,城市包含数据中具备县城的数据,所以需要将拿到的数据做一次转换,将所有的县城转换到对应省市里去,然后再将同一个省市的评论数量相加,得到最后的结果。

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
city = data.groupby(['city'])
city_com = city['rate'].agg(['mean','count'])
city_com.reset_index(inplace=True)
fo = open("citys.json",'r')
citys_info = fo.readlines()
citysJson = json.loads(str(citys_info[0]))
data_map_all = [(getRealName(city_com['city'][i], citysJson),city_com['count'][i]) for i in range(0,city_com.shape[0])]
data_map_list = {}
for item in data_map_all:
 if data_map_list.has_key(item[0]):
  value = data_map_list[item[0]]
  value += item[1]
  data_map_list[item[0]] = value
 else:
  data_map_list[item[0]] = item[1]
data_map = [(realKeys(key), data_map_list[key] ) for key in data_map_list.keys()]
def getRealName(name, jsonObj):
 for item in jsonObj:
  if item.startswith(name) :
   return jsonObj[item]
 return name
def realKeys(name):
 return name.replace(u"省", "").replace(u"市", "")
    .replace(u"回族自治区", "").replace(u"维吾尔自治区", "")
    .replace(u"壮族自治区", "").replace(u"自治区", "")

经过上面的数据处理,使用 Pyecharts 提供的 map 来生成一个按省/市来展示的地图:

def generateMap(data_map):
 map = Map("城市评论数", width= 1200, height = 800, title_pos="center")
 while True:
  try:
   attr,val = geo.cast(data_map)
   map.add("",attr,val,visual_range=[0,800],
     visual_text_color="#fff",symbol_size=5,
     is_visualmap=True,maptype='china',
     is_map_symbol_show=False,is_label_show=True,is_roam=False,
     )
  except ValueError as e:
   e = e.message.split("No coordinate is specified for ")[1]
   data_map = filter(lambda item: item[0] != e, data_map)
  else :
   break
 map.render('city_rate_count.html')

用Python 爬取猫眼电影数据分析《无名之辈》

当然,我们还可以来可视化一下每一个评分的人数,这个地方采用柱状图来显示:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
# 按评分分类
rateData = data.groupby(['rate'])
rateDataCount = rateData["date"].agg([ "count"])
rateDataCount.reset_index(inplace=True)
count = rateDataCount.shape[0] - 1
attr = [rateDataCount["rate"][count - i] for i in range(0, rateDataCount.shape[0])]
v1 = [rateDataCount["count"][count - i] for i in range(0, rateDataCount.shape[0])]
bar = Bar("评分数量")
bar.add("数量",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2,
  xaxis_interval=0,is_splitline_show=True)
bar.render("html/rate_count.html")

画出来的图,如下所示,在猫眼的数据中,五星好评的占比超过了 50%,比豆瓣上 34.8% 的五星数据好很多。

用Python 爬取猫眼电影数据分析《无名之辈》

从以上观众分布和评分的数据可以看到,这一部剧,观众朋友还是非常地喜欢。前面,从猫眼拿到了观众的评论数据。现在,笔者将通过 jieba 把评论进行分词,然后通过 Wordcloud 制作词云,来看看,观众朋友们对《无名之辈》的整体评价:

data = pd.read_csv(f,sep='{',header=None,encoding='utf-8',names=['date','nickname','city','rate','comment'])
comment = jieba.cut(str(data['comment']),cut_all=False)
wl_space_split = " ".join(comment)
backgroudImage = np.array(Image.open(r"./unknow_3.png"))
stopword = STOPWORDS.copy()
wc = WordCloud(width=1920,height=1080,background_color='white',
 mask=backgroudImage,
 font_path="./Deng.ttf",
 stopwords=stopword,max_font_size=400,
 random_state=50)
wc.generate_from_text(wl_space_split)
plt.imshow(wc)
plt.axis("off")
wc.to_file('unknow_word_cloud.png')

导出:

用Python 爬取猫眼电影数据分析《无名之辈》 .

到此这篇关于用Python 爬取猫眼电影数据分析《无名之辈》的文章就介绍到这了,更多相关Python 爬取猫眼电影数据分析《无名之辈》内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
详解Python中的序列化与反序列化的使用
Jun 30 Python
python相似模块用例
Mar 04 Python
Python中内置的日志模块logging用法详解
Jul 12 Python
pygame加载中文名mp3文件出现error
Mar 31 Python
Python 实现链表实例代码
Apr 07 Python
Python使用time模块实现指定时间触发器示例
May 18 Python
详解Python3.6的py文件打包生成exe
Jul 13 Python
Python wxpython模块响应鼠标拖动事件操作示例
Aug 23 Python
浅谈django rest jwt vue 跨域问题
Oct 26 Python
python3 实现验证码图片切割的方法
Dec 07 Python
python利用openpyxl拆分多个工作表的工作簿的方法
Sep 27 Python
基于keras 模型、结构、权重保存的实现
Jan 24 Python
基于Python实现简单学生管理系统
Jul 24 #Python
用python实现学生管理系统
Jul 24 #Python
Python 解析简单的XML数据
Jul 24 #Python
深入了解NumPy 高级索引
Jul 24 #Python
python实现学生管理系统开发
Jul 24 #Python
浅析Python 多行匹配模式
Jul 24 #Python
Python图像处理二值化方法实例汇总
Jul 24 #Python
You might like
PHP实现网上点歌(二)
2006/10/09 PHP
一个PHP验证码类代码分享(已封装成类)
2011/07/17 PHP
php简单开启gzip压缩方法(zlib.output_compression)
2013/04/13 PHP
smarty缓存用法分析
2014/12/16 PHP
PHP实现补齐关闭的HTML标签
2016/03/22 PHP
CSS+Table图文混排中实现文本自适应图片宽度(超简单+跨所有浏览器)
2009/02/14 Javascript
让浏览器非阻塞加载javascript的几种方法小结
2011/04/25 Javascript
window.print打印指定div实例代码
2013/12/13 Javascript
Jquery如何实现点击时高亮显示代码
2014/01/22 Javascript
JQuery实现动态适时改变字体颜色的方法
2015/03/10 Javascript
深入解读JavaScript中的Iterator和for-of循环
2015/07/28 Javascript
JS实现弹出居中的模式窗口示例
2016/06/20 Javascript
js发送短信倒计时的简单实现方法
2016/09/08 Javascript
微信 java 实现js-sdk 图片上传下载完整流程
2016/10/21 Javascript
详解利用Angular实现多团队模块化SPA开发框架
2017/11/27 Javascript
angular2中使用第三方js库的实例
2018/02/26 Javascript
vue 微信授权登录解决方案
2018/04/10 Javascript
详解Angular5路由传值方式及其相关问题
2018/04/28 Javascript
Vue前后端不同端口的实现方法
2018/09/19 Javascript
JavaScript 实现HTML DOM增删改查操作的常见方法详解
2020/01/04 Javascript
js实现验证码干扰(动态)
2021/02/23 Javascript
python opencv 图像尺寸变换方法
2018/04/02 Python
Python使用pyautogui模块实现自动化鼠标和键盘操作示例
2018/09/04 Python
Python爬取视频(其实是一篇福利)过程解析
2019/08/01 Python
python求平均数、方差、中位数的例子
2019/08/22 Python
python实现scrapy爬虫每天定时抓取数据的示例代码
2021/01/27 Python
HTML5实现文件断点续传的方法
2017/01/04 HTML / CSS
领先的钻石和订婚戒指零售商:Diamonds-USA
2016/12/11 全球购物
说一下Linux下有关用户和组管理的命令
2016/01/04 面试题
应届生高等护理求职信
2013/10/12 职场文书
运动会演讲稿100字
2014/08/25 职场文书
万能检讨书
2015/01/27 职场文书
创业计划书之酒店
2019/08/30 职场文书
jquery插件实现代码雨特效
2021/04/24 jQuery
Dubbo+zookeeper搭配分布式服务的过程详解
2022/04/03 Java/Android
Redis sentinel哨兵集群的实现步骤
2022/07/15 Redis