Posted in Python onJanuary 02, 2020
代码:
import torch class_num = 10 batch_size = 4 label = torch.LongTensor(batch_size, 1).random_() % class_num print(label.size()) one_hot = torch.zeros(batch_size, class_num).scatter_(1, label, 1) print(one_hot)
输出:
torch.Size([4, 1]) tensor([[0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
注意:
label的形状必须是[n,1]的,也就是必须是二维的,且第二个维度长度为1,如果是一维度的,则需要升维度,代码如下:
import torch class_num = 10 batch_size = 4 label = torch.LongTensor(batch_size).random_() % class_num print(label.size()) label = torch.unsqueeze(label,dim=1) print(label.size())
以上这篇pytorch标签转onehot形式实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pytorch标签转onehot形式实例
- Author -
头发光了你就强了声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@