python 实现检验33品种数据是否是正态分布


Posted in Python onDecember 09, 2019

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 17:03:16 2017
@author: yunjinqi 
 
E-mail:yunjinqi@qq.com 
 
Differentiate yourself in the world from anyone else.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
from statsmodels.sandbox.stats.runs import runstest_1samp
import scipy.stats as sts 
 
namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9',
    'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf',
    'zc','fg','ta','ma','oi','rm','sm']
j=0
for i in namelist:
 
 filename='C:/Users/HXWD/Desktop/数据/'+i+'.csv'
 data=pd.read_csv(filename,encoding='gbk')
 data.columns=['date','open','high','low','close','amt','opi']
 data.head()
 data=np.log(data['close'])
 r=data-data.shift(1)
 r=r.dropna()
 #print(r)
 rate = np.array(list(r))
 print('品种{}数据长度{}均值{}标准差{}方差{}偏度{}峰度{}'.format(i,len(rate),
   rate.mean(),rate.std(),rate.var(),sts.skew(rate),
   sts.kurtosis(rate)))
#结果

品种cu数据长度4976均值0.00012152573153376814标准差0.014276535327917023方差0.0002038194609692628偏度-0.16028824462338614峰度2.642455989417427
品种al数据长度5406均值-2.3195089066551237e-05标准差0.009053990835143359方差8.197475004285994e-05偏度-0.34748915595295604峰度5.083890815632417
品种zn数据长度2455均值-0.00011823058103745542标准差0.016294570963077237方差0.00026551304287075983偏度-0.316153612624431峰度1.7208737518119293
品种pb数据长度1482均值-9.866770650275384e-05标准差0.011417348325010642方差0.0001303558427746233偏度-0.21599833469407717峰度5.878332673854807
品种sn数据长度510均值0.00034131697514080907标准差0.013690993291257949方差0.00018744329730127014偏度0.024808842588775293峰1.072347367872859
品种au数据长度2231均值0.0001074021979121701标准差0.012100456199756058方差0.00014642104024221482偏度-0.361814930575112峰度4.110915875328322
品种ag数据长度1209均值-0.0003262089978362889标准差0.014853094655086982方差0.00022061442083297348偏度-0.2248883178719188峰度4.296247290616826
品种rb数据长度1966均值-6.984154093694264e-05标准差0.013462363746262961方差0.00018123523763669528偏度0.07827546016742666峰度5.198115698123077
品种hc数据长度758均值-7.256339078572361e-05标准差0.01710980071993581方差0.000292745280675916偏度-0.08403481899486816峰度3.6250669416786323
品种bu数据长度864均值-0.0006258998207218544标准差0.01716581014361468方差0.0002946650378866246偏度-0.41242405508236435峰度2.437556911829674
品种ru数据长度4827均值5.17426767764321e-05标准差0.016747187916000945方差0.00028046830309384806偏度-0.1986573449586119峰度1.736876616149547
品种m9数据长度4058均值8.873778774208505e-05标准差0.012812626470272115方差0.0001641633970667177偏度-0.12119836197638824峰度2.159984922606264
品种y9数据长度2748均值4.985975458693667e-05标准差0.012855191360434762方差0.00016525594491339655偏度-0.33456507243405786峰度2.566586342814616
品种a9数据长度5392均值9.732600802295795e-05标准差0.010601259945310599方差0.00011238671242804687偏度-0.08768586026629852峰度3.898562231789457
品种p9数据长度2311均值-0.00021108840931287863标准差0.014588073181583774方差0.00021281187915124373偏度-0.2881364812318466峰度1.693401619226936
品种c9数据长度3075均值0.00010060972262212708标准差0.007206853641314312方差5.1938739407325355e-05偏度-5.204419912904765e-05峰6.074899127691497
品种cs数据长度573均值-0.0006465907683602394标准差0.011237570390237955方差0.00012628298827555283偏度0.10170996173895988峰度1.176384982024672
品种jd数据长度847均值-9.035290965408637e-05标准差0.01167344224455134方差0.00013626925383687581偏度-0.0682866825422671峰度2.0899893901516133
品种l9数据长度2370均值-0.00014710186232216803标准差0.014902467199956509方差0.00022208352864577958偏度-0.2105262196327885峰度1.8796065573836
品种v9数据长度1927均值-5.190379527562386e-05标准差0.010437020362123387方差0.00010893139403937818偏度-0.050531345744352064峰度3.47595007264211
品种pp数据长度773均值-0.0003789841804842144标准差0.01439578332841083方差0.00020723857763855122偏度0.05479337073436029峰度1.3397870170464232
品种j9数据长度1468均值-0.00021854062264841954标准差0.01639429047795793方差0.000268772760275662偏度-0.10048542944058193峰度5.156597958913997
品种jm数据长度997均值-0.00011645794468155402标准差0.01792430947223131方差0.000321280870056321偏度0.0010592028961588294峰度3.743159578760195
品种i9数据长度862均值-0.0007372124442033161标准差0.021187573227350754方差0.0004489132592643504偏度0.00014411506989559858峰度1.585951370650
品种sr数据长度2749均值0.00012213466321006727标准差0.012183745931527473方差0.00014844366492401223偏度-0.038613285961243735峰度2.520231613626
品种cf数据长度3142均值2.2008517526768612e-05标准差0.010657271857464626方差0.00011357744344390753偏度-0.034412876065561426峰度5.6421501855702
品种zc数据长度475均值0.00041282070613302206标准差0.015170141171075784方差0.00023013318315036853偏度-0.1393361750238265峰度1.2533894316392926
品种fg数据长度1068均值-1.57490340832121e-05标准差0.013148411070446203方差0.00017288071367743227偏度0.008980132282547534峰度1.9028507879273144
品种ta数据长度2518均值-0.00023122774877981512标准差0.013637519813532077方差0.00018598194666447998偏度-0.9126347458178135峰度10.954670464918
品种ma数据长度700均值-0.00024988691257348835标准差0.015328611435734359方差0.00023496632854772616偏度0.0164362832185746峰度1.1736088397060
品种oi数据长度1098均值-0.0004539513793265549标准差0.009589990427720812方差9.196791640377678e-05偏度-0.28987574371279706峰度3.871322266527967
品种rm数据长度1049均值1.458523923966432e-05标准差0.013432556545527753方差0.00018043357534880047偏度-0.053300026893851014峰度1.3938292783638
品种sm数据长度548均值-3.179600698107184e-05标准差0.020018458278106444方差0.00040073867183228846偏度-2.6734390275887647峰度31.533801188366837

#正态分布的偏度应该是0,峰度是3,所以,不满者这些的都是非标准正态分布

以上这篇python 实现检验33品种数据是否是正态分布就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的print用法示例
Feb 11 Python
python实现的简单RPG游戏流程实例
Jun 28 Python
Python编程判断这天是这一年第几天的方法示例
Apr 18 Python
PyQt 实现使窗口中的元素跟随窗口大小的变化而变化
Jun 18 Python
用python写一个定时提醒程序的实现代码
Jul 22 Python
Django实现基于类的分页功能
Oct 31 Python
Python numpy多维数组实现原理详解
Mar 10 Python
python 安装库几种方法之cmd,anaconda,pycharm详解
Apr 08 Python
Django实现图片上传功能步骤解析
Apr 22 Python
解决pymysql cursor.fetchall() 获取不到数据的问题
May 15 Python
python中查看.db文件中表格的名字及表格中的字段操作
Jul 07 Python
使用anaconda安装pytorch的实现步骤
Sep 03 Python
Python远程开发环境部署与调试过程图解
Dec 09 #Python
使用 Python 合并多个格式一致的 Excel 文件(推荐)
Dec 09 #Python
Python udp网络程序实现发送、接收数据功能示例
Dec 09 #Python
python3 tcp的粘包现象和解决办法解析
Dec 09 #Python
python绘制规则网络图形实例
Dec 09 #Python
Spring实战之使用util:命名空间简化配置操作示例
Dec 09 #Python
python爬虫模拟浏览器的两种方法实例分析
Dec 09 #Python
You might like
最新用php获取谷歌PR值算法,附上php查询PR值代码示例
2011/12/25 PHP
php Xdebug的安装与使用详解
2013/06/20 PHP
PHP保存带BOM文件的方法
2015/02/12 PHP
PHP如何获取当前主机、域名、网址、路径、端口等参数
2017/06/09 PHP
javascript dom代码应用 简单的相册[firefox only]
2010/06/12 Javascript
javascript在当前窗口关闭前检测窗口是否关闭
2014/09/29 Javascript
Node.js中HTTP模块与事件模块详解
2014/11/14 Javascript
jQuery.Callbacks()回调函数队列用法详解
2016/06/14 Javascript
vue.js入门教程之绑定class和style样式
2016/09/02 Javascript
微信小程序tabbar不显示解决办法
2017/06/08 Javascript
typescript nodejs 依赖注入实现方法代码详解
2019/07/21 NodeJs
nodejs使用node-xlsx生成excel的方法示例
2019/08/22 NodeJs
js实现简单的贪吃蛇游戏
2020/04/23 Javascript
[01:00:25]NB vs Secret 2018国际邀请赛小组赛BO1 B组加赛 8.19
2018/08/21 DOTA
举例简单讲解Python中的数据存储模块shelve的用法
2016/03/03 Python
Python编程使用tkinter模块实现计算器软件完整代码示例
2017/11/29 Python
python爬虫之xpath的基本使用详解
2018/04/18 Python
python实现在IDLE中输入多行的方法
2018/04/19 Python
linux下python使用sendmail发送邮件
2018/05/22 Python
python2.7和NLTK安装详细教程
2018/09/19 Python
python 类的继承 实例方法.静态方法.类方法的代码解析
2019/08/23 Python
python如果快速判断数字奇数偶数
2019/11/13 Python
python3正则模块re的使用方法详解
2020/02/11 Python
全球最大的跑步用品商店:Road Runner Sports
2016/09/11 全球购物
好莱坞百老汇御用王牌美妆:Koh Gen Do 江原道
2018/04/03 全球购物
鉴定评语大全
2014/05/05 职场文书
关于安全的标语
2014/06/10 职场文书
小学捐书活动总结
2014/07/05 职场文书
2014年国庆晚会主持词
2014/09/19 职场文书
师范生免费教育协议书范本
2014/10/09 职场文书
政审证明范文
2015/06/19 职场文书
学习《中小学教师职业道德规范》心得体会
2016/01/18 职场文书
python lambda 表达式形式分析
2022/04/03 Python
Python实现猜拳与猜数字游戏的方法详解
2022/04/06 Python
CentOS 7安装mysql5.7使用XtraBackUp备份工具命令详解
2022/04/12 MySQL
python使用BeautifulSoup 解析HTML
2022/04/24 Python