python 实现检验33品种数据是否是正态分布


Posted in Python onDecember 09, 2019

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 17:03:16 2017
@author: yunjinqi 
 
E-mail:yunjinqi@qq.com 
 
Differentiate yourself in the world from anyone else.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
from statsmodels.sandbox.stats.runs import runstest_1samp
import scipy.stats as sts 
 
namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9',
    'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf',
    'zc','fg','ta','ma','oi','rm','sm']
j=0
for i in namelist:
 
 filename='C:/Users/HXWD/Desktop/数据/'+i+'.csv'
 data=pd.read_csv(filename,encoding='gbk')
 data.columns=['date','open','high','low','close','amt','opi']
 data.head()
 data=np.log(data['close'])
 r=data-data.shift(1)
 r=r.dropna()
 #print(r)
 rate = np.array(list(r))
 print('品种{}数据长度{}均值{}标准差{}方差{}偏度{}峰度{}'.format(i,len(rate),
   rate.mean(),rate.std(),rate.var(),sts.skew(rate),
   sts.kurtosis(rate)))
#结果

品种cu数据长度4976均值0.00012152573153376814标准差0.014276535327917023方差0.0002038194609692628偏度-0.16028824462338614峰度2.642455989417427
品种al数据长度5406均值-2.3195089066551237e-05标准差0.009053990835143359方差8.197475004285994e-05偏度-0.34748915595295604峰度5.083890815632417
品种zn数据长度2455均值-0.00011823058103745542标准差0.016294570963077237方差0.00026551304287075983偏度-0.316153612624431峰度1.7208737518119293
品种pb数据长度1482均值-9.866770650275384e-05标准差0.011417348325010642方差0.0001303558427746233偏度-0.21599833469407717峰度5.878332673854807
品种sn数据长度510均值0.00034131697514080907标准差0.013690993291257949方差0.00018744329730127014偏度0.024808842588775293峰1.072347367872859
品种au数据长度2231均值0.0001074021979121701标准差0.012100456199756058方差0.00014642104024221482偏度-0.361814930575112峰度4.110915875328322
品种ag数据长度1209均值-0.0003262089978362889标准差0.014853094655086982方差0.00022061442083297348偏度-0.2248883178719188峰度4.296247290616826
品种rb数据长度1966均值-6.984154093694264e-05标准差0.013462363746262961方差0.00018123523763669528偏度0.07827546016742666峰度5.198115698123077
品种hc数据长度758均值-7.256339078572361e-05标准差0.01710980071993581方差0.000292745280675916偏度-0.08403481899486816峰度3.6250669416786323
品种bu数据长度864均值-0.0006258998207218544标准差0.01716581014361468方差0.0002946650378866246偏度-0.41242405508236435峰度2.437556911829674
品种ru数据长度4827均值5.17426767764321e-05标准差0.016747187916000945方差0.00028046830309384806偏度-0.1986573449586119峰度1.736876616149547
品种m9数据长度4058均值8.873778774208505e-05标准差0.012812626470272115方差0.0001641633970667177偏度-0.12119836197638824峰度2.159984922606264
品种y9数据长度2748均值4.985975458693667e-05标准差0.012855191360434762方差0.00016525594491339655偏度-0.33456507243405786峰度2.566586342814616
品种a9数据长度5392均值9.732600802295795e-05标准差0.010601259945310599方差0.00011238671242804687偏度-0.08768586026629852峰度3.898562231789457
品种p9数据长度2311均值-0.00021108840931287863标准差0.014588073181583774方差0.00021281187915124373偏度-0.2881364812318466峰度1.693401619226936
品种c9数据长度3075均值0.00010060972262212708标准差0.007206853641314312方差5.1938739407325355e-05偏度-5.204419912904765e-05峰6.074899127691497
品种cs数据长度573均值-0.0006465907683602394标准差0.011237570390237955方差0.00012628298827555283偏度0.10170996173895988峰度1.176384982024672
品种jd数据长度847均值-9.035290965408637e-05标准差0.01167344224455134方差0.00013626925383687581偏度-0.0682866825422671峰度2.0899893901516133
品种l9数据长度2370均值-0.00014710186232216803标准差0.014902467199956509方差0.00022208352864577958偏度-0.2105262196327885峰度1.8796065573836
品种v9数据长度1927均值-5.190379527562386e-05标准差0.010437020362123387方差0.00010893139403937818偏度-0.050531345744352064峰度3.47595007264211
品种pp数据长度773均值-0.0003789841804842144标准差0.01439578332841083方差0.00020723857763855122偏度0.05479337073436029峰度1.3397870170464232
品种j9数据长度1468均值-0.00021854062264841954标准差0.01639429047795793方差0.000268772760275662偏度-0.10048542944058193峰度5.156597958913997
品种jm数据长度997均值-0.00011645794468155402标准差0.01792430947223131方差0.000321280870056321偏度0.0010592028961588294峰度3.743159578760195
品种i9数据长度862均值-0.0007372124442033161标准差0.021187573227350754方差0.0004489132592643504偏度0.00014411506989559858峰度1.585951370650
品种sr数据长度2749均值0.00012213466321006727标准差0.012183745931527473方差0.00014844366492401223偏度-0.038613285961243735峰度2.520231613626
品种cf数据长度3142均值2.2008517526768612e-05标准差0.010657271857464626方差0.00011357744344390753偏度-0.034412876065561426峰度5.6421501855702
品种zc数据长度475均值0.00041282070613302206标准差0.015170141171075784方差0.00023013318315036853偏度-0.1393361750238265峰度1.2533894316392926
品种fg数据长度1068均值-1.57490340832121e-05标准差0.013148411070446203方差0.00017288071367743227偏度0.008980132282547534峰度1.9028507879273144
品种ta数据长度2518均值-0.00023122774877981512标准差0.013637519813532077方差0.00018598194666447998偏度-0.9126347458178135峰度10.954670464918
品种ma数据长度700均值-0.00024988691257348835标准差0.015328611435734359方差0.00023496632854772616偏度0.0164362832185746峰度1.1736088397060
品种oi数据长度1098均值-0.0004539513793265549标准差0.009589990427720812方差9.196791640377678e-05偏度-0.28987574371279706峰度3.871322266527967
品种rm数据长度1049均值1.458523923966432e-05标准差0.013432556545527753方差0.00018043357534880047偏度-0.053300026893851014峰度1.3938292783638
品种sm数据长度548均值-3.179600698107184e-05标准差0.020018458278106444方差0.00040073867183228846偏度-2.6734390275887647峰度31.533801188366837

#正态分布的偏度应该是0,峰度是3,所以,不满者这些的都是非标准正态分布

以上这篇python 实现检验33品种数据是否是正态分布就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python类的方法属性与方法属性的动态绑定代码详解
Dec 27 Python
Pyqt实现无边框窗口拖动以及窗口大小改变
Apr 19 Python
python得到qq句柄,并显示在前台的方法
Oct 14 Python
解决pip install xxx报错SyntaxError: invalid syntax的问题
Nov 30 Python
Python实现将HTML转成PDF的方法分析
May 04 Python
python从入门到精通 windows安装python图文教程
May 18 Python
django 邮件发送模块smtp使用详解
Jul 22 Python
使用python实现离散时间傅里叶变换的方法
Sep 02 Python
Python3 filecmp模块测试比较文件原理解析
Mar 23 Python
解决使用python print打印函数返回值多一个None的问题
Apr 09 Python
python爬取企查查企业信息之selenium自动模拟登录企查查
Apr 08 Python
用Python生成会跳舞的美女
Jan 18 Python
Python远程开发环境部署与调试过程图解
Dec 09 #Python
使用 Python 合并多个格式一致的 Excel 文件(推荐)
Dec 09 #Python
Python udp网络程序实现发送、接收数据功能示例
Dec 09 #Python
python3 tcp的粘包现象和解决办法解析
Dec 09 #Python
python绘制规则网络图形实例
Dec 09 #Python
Spring实战之使用util:命名空间简化配置操作示例
Dec 09 #Python
python爬虫模拟浏览器的两种方法实例分析
Dec 09 #Python
You might like
PHP 文件类型判断代码
2009/03/13 PHP
linux下为php添加curl扩展的方法
2011/07/29 PHP
PHP反转字符串函数strrev()函数的用法
2012/02/04 PHP
php实现文件下载更能介绍
2012/11/23 PHP
sae使用smarty模板的方法
2013/12/17 PHP
yii上传文件或图片实例
2014/04/01 PHP
destoon之一键登录设置
2014/06/21 PHP
制作安全性高的PHP网站的几个实用要点
2014/12/30 PHP
JavaScript 对Cookie 操作的封装小结
2009/12/31 Javascript
js 面向对象的技术创建高级 Web 应用程序
2010/02/25 Javascript
JavaScript prototype属性使用说明
2010/05/13 Javascript
jQuery 源码分析笔记(4) Ready函数
2011/06/02 Javascript
javascript动画对象支持加速、减速、缓入、缓出的实现代码
2012/09/30 Javascript
JS格式化数字保留两位小数点示例代码
2013/10/15 Javascript
JavaScript自定义方法实现trim()、Ltrim()、Rtrim()的功能
2013/11/03 Javascript
jQuery获得页面元素的绝对/相对位置即绝对X,Y坐标
2014/03/06 Javascript
SpringMVC返回json数据的三种方式
2015/12/10 Javascript
Vue.js路由组件vue-router使用方法详解
2016/12/02 Javascript
angular.js和vue.js中实现函数去抖示例(debounce)
2018/01/18 Javascript
小程序tab页无法传递参数的方法
2018/08/03 Javascript
小程序开发基础之view视图容器
2018/08/21 Javascript
JS使用队列对数组排列,基数排序算法示例
2019/03/02 Javascript
react 组件传值的三种方法
2019/06/03 Javascript
js实现小星星游戏
2020/03/23 Javascript
vue 解决在微信内置浏览器中调用支付宝支付的情况
2020/11/09 Javascript
Python Web框架Pylons中使用MongoDB的例子
2013/12/03 Python
python使用百度文字识别功能方法详解
2019/07/23 Python
python处理RSTP视频流过程解析
2020/01/11 Python
keras做CNN的训练误差loss的下降操作
2020/06/22 Python
Python Request类源码实现方法及原理解析
2020/08/17 Python
印度尼西亚在线时尚购物网站:ZALORA印尼
2016/08/02 全球购物
软件项目实施计划书
2014/05/02 职场文书
如何在Mac上通过docker配置PHP开发环境
2021/05/29 PHP
详解Java实现数据结构之并查集
2021/06/23 Java/Android
Python开发工具Pycharm的安装以及使用步骤总结
2021/06/24 Python
Vue2.0搭建脚手架
2022/03/13 Vue.js