python傅里叶变换FFT绘制频谱图


Posted in Python onJuly 19, 2019

本文实例为大家分享了python傅里叶变换FFT绘制频谱图的具体代码,供大家参考,具体内容如下

频谱图的横轴表示的是 频率, 纵轴表示的是振幅

#coding=gbk
 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
#依据快速傅里叶算法得到信号的频域
def test_fft():
 sampling_rate = 8000 #采样率
 fft_size = 8000  #FFT长度
 t = np.arange(0, 1.0, 1.0/sampling_rate)
 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)+ 3*np.sin(2*np.pi*200*t)
 xs = x[:fft_size]
 
 xf = np.fft.rfft(xs) / fft_size #返回fft_size/2+1 个频率
 
 freqs = np.linspace(0, sampling_rate/2, fft_size/2+1) #表示频率
 xfp = np.abs(xf) * 2 #代表信号的幅值,即振幅
 
 plt.figure(num='original', figsize=(15, 6))
 plt.plot(x[:100])
 
 plt.figure(figsize=(8,4))
 plt.subplot(211)
 plt.plot(t[:fft_size], xs)
 plt.xlabel(u"时间(秒)", fontproperties='FangSong')
 plt.title(u"156.25Hz和234.375Hz的波形和频谱", fontproperties='FangSong')
 
 plt.subplot(212)
 plt.plot(freqs, xfp)
 plt.xlabel(u"频率(Hz)", fontproperties='FangSong')
 plt.ylabel(u'幅值', fontproperties='FangSong')
 plt.subplots_adjust(hspace=0.4)
 plt.show()
 
test_fft()
# np.clip(a, a_min, a_max, out) 输出与a 的shape一样,大于等于a_min,小于等于a_max的数,即在 [a_min, a_max]之间的数
a = np.arange(10)
print(a)
print(a.shape)
# [0 1 2 3 4 5 6 7 8 9]
b = np.empty((10,))
np.clip(a, 3, 8, out=b)
print(b)
# [3. 3. 3. 3. 4. 5. 6. 7. 8. 8.]
c = np.clip(a, 4, 10)
print(c)
# [4 4 4 4 4 5 6 7 8 9]
#a_min, a_max也可以输入与a 相同shape的数组
d = np.arange(4)
d1 = np.clip(d, [-1, 1, -3, 2], 2)
print(d)
print(d1)
# [0 1 2 3] #原数组
# [0 1 2 2] 
 
print(np.log10(1000))
 
def test_fft():
# FFT变换是针对一组数值进行运算的,这组数的长度N必须是2的整数次幂,例如64, 128, 256等等; 数值可以是实数也可以是复数,
# 通常我们的时域信号都是实数,因此下面都以实数为例。我们可以把这一组实数想像成对某个连续信号按照一定取样周期进行取样而得来,
# 如果对这组N个实数值进行FFT变换,将得到一个有N个复数的数组,我们称此复数数组为频域信号,此复数数组符合如下规律:
# 
# 下标为0和N/2的两个复数的虚数部分为0,
# 下标为i和N-i的两个复数共轭,也就是其虚数部分数值相同、符号相反。
 np.random.seed(66)
 X = np.random.rand(8)
 print(X)
#  [0.15428758 0.13369956 0.36268547 0.67910888 0.19445006 0.25121038
# 0.75841639 0.55761859]
 xf = np.fft.fft(X)
 print(xf)
#  [ 3.0914769 +0.j   -0.20916178+0.39291702j -0.77236422+0.85181752j
#  0.12883683-0.39854483j -0.15179792+0.j   0.12883683+0.39854483j
#  -0.77236422-0.85181752j -0.20916178-0.39291702j]
 #通过快速傅里叶变换的逆变换 ifft 还原成原来的值
 X1 = np.fft.ifft(xf)
 print(X1)
# [0.15428758+0.00000000e+00j 0.13369956-2.00387919e-16j
# 0.36268547+1.66533454e-16j 0.67910888+1.51815661e-16j
# 0.19445006+0.00000000e+00j 0.25121038-1.51815661e-16j
# 0.75841639-1.66533454e-16j 0.55761859+2.00387919e-16j] 
 
# 下面让我们来看看FFT变换之后的那些复数都代表什么意思。
# 
# 首先下标为0的实数表示了时域信号中的直流成分的多少
# 下标为i的复数a+b*j表示时域信号中周期为N/i个取样值的正弦波和余弦波的成分的多少, 其中a表示cos波形的成分,b表示sin波形的成分 
 X = np.ones(8)
 x2 = np.fft.fft(X) / len(X) # 为了计算各个成分的能量多少,需要将FFT的结果除以FFT的长度
 print(x2) 
# [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
 
 X = np.arange(0, 2*np.pi, 2*np.pi/8)
 y = np.sin(X)
 x3 = np.fft.fft(y) /len(y)
 print(x3)
# [ 1.43029718e-18+0.00000000e+00j -4.44089210e-16-5.00000000e-01j # 只有下标为 1 的复数的虚部为-0.5,
# 1.53080850e-17-1.38777878e-17j 3.87727691e-17-1.11022302e-16j
# 2.91858728e-17+0.00000000e+00j 0.00000000e+00-1.11022302e-16j
# 1.53080850e-17+1.38777878e-17j 3.44084101e-16+5.00000000e-01j] 
 output1 = np.fft.fft(np.cos(X) / len(X)) 
 print(output1) 
# [-4.30636606e-17+0.00000000e+00j 5.00000000e-01-2.66538563e-16j #只有下标为1 的实部为 0.5
# 1.53080850e-17+0.00000000e+00j 5.55111512e-17+1.97149624e-16j
# 1.24474906e-17+0.00000000e+00j -1.11022302e-16+2.05306223e-16j
# 1.53080850e-17+0.00000000e+00j 5.00000000e-01-1.35917284e-16j] 
 
 #综合的例子
 X = np.arange(0, 2*np.pi, 2*np.pi/128)
 y = 0.3*np.cos(X) + 0.5*np.cos(2*X+np.pi/4) + 0.8*np.cos(3*X-np.pi/3)
 yf = np.fft.fft(y) / len(y)
 print(2*np.abs(yf[1]), np.rad2deg(np.angle(yf[1])))
#  0.30000000000000016 3.3130777931911615e-15   #计算出幅值和相位角
 print(2*np.abs(yf[2]), np.rad2deg(np.angle(yf[2])))
#  0.5000000000000002 44.999999999999986
 print(2*np.abs(yf[3]), np.rad2deg(np.angle(yf[3])))
#  0.7999999999999998 -60.00000000000007
 
# 周期为128/1.0点的余弦波的相位为0, 振幅为0.3
# 周期为64/2.0点的余弦波的相位为45度, 振幅为0.5
# 周期为128/3.0点的余弦波的相位为-60度,振幅为0.8
# test_fft()
 
#使用多个正玄波合成三角波
import pylab as pl
# 取FFT计算的结果freqs中的前n项进行合成,返回合成结果,计算loops个周期的波形
def fft_combine(freqs, n, loops=1):
 length = len(freqs) * loops
 data = np.zeros(length)
 index = loops * np.arange(0, length, 1.0) / length * (2 * np.pi)
 for k, p in enumerate(freqs[:n]):
  if k != 0: p *= 2 # 除去直流成分之外,其余的系数都*2
  data += np.real(p) * np.cos(k*index) # 余弦成分的系数为实数部
  data -= np.imag(p) * np.sin(k*index) # 正弦成分的系数为负的虚数部
 return index, data 
 
# 产生size点取样的三角波,其周期为1
def triangle_wave(size):
 x = np.arange(0, 1, 1.0/size)
 y = np.where(x<0.5, x, 0)
 y = np.where(x>=0.5, 1-x, y)
 return x, y
 
def test_show():
 fft_size = 256
 
 # 计算三角波和其FFT
 x, y = triangle_wave(fft_size)
 fy = np.fft.fft(y) / fft_size
 
 # 绘制三角波的FFT的前20项的振幅,由于不含下标为偶数的值均为0, 因此取
 # log之后无穷小,无法绘图,用np.clip函数设置数组值的上下限,保证绘图正确
 pl.figure()
 pl.plot(np.clip(20*np.log10(np.abs(fy[:20])), -120, 120), "o")
 pl.xlabel("frequency bin")
 pl.ylabel("power(dB)")
 pl.title("FFT result of triangle wave")
 
 # 绘制原始的三角波和用正弦波逐级合成的结果,使用取样点为x轴坐标
 pl.figure()
 pl.plot(y, label="original triangle", linewidth=2)
 for i in [0,1,3,5,7,9]:
  index, data = fft_combine(fy, i+1, 2) # 计算两个周期的合成波形
  pl.plot(data, label = "N=%s" % i)
 pl.legend()
 pl.title("partial Fourier series of triangle wave")
 pl.show()
 
# test_show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python简单分割文件的方法
Jul 30 Python
Python中内置数据类型list,tuple,dict,set的区别和用法
Dec 14 Python
小米5s微信跳一跳小程序python源码
Jan 08 Python
Python Tkinter实现简易计算器功能
Jan 30 Python
Python处理中文标点符号大集合
May 14 Python
python 提取tuple类型值中json格式的key值方法
Dec 31 Python
python中的print()输出
Apr 12 Python
django formset实现数据表的批量操作的示例代码
Dec 06 Python
python Jupyter运行时间实例过程解析
Dec 13 Python
python numpy实现多次循环读取文件 等间隔过滤数据示例
Mar 14 Python
详解Go语言运用广度优先搜索走迷宫
Jun 23 Python
Python制作动态字符画的源码
Aug 04 Python
Django forms表单 select下拉框的传值实例
Jul 19 #Python
Django组件content-type使用方法详解
Jul 19 #Python
django多个APP的urls设置方法(views重复问题解决)
Jul 19 #Python
django admin组件使用方法详解
Jul 19 #Python
使用python分析统计自己微信朋友的信息
Jul 19 #Python
django url到views参数传递的实例
Jul 19 #Python
Django  ORM 练习题及答案
Jul 19 #Python
You might like
杏林同学录(一)
2006/10/09 PHP
JQUERY 对象与DOM对象之两者相互间的转换
2009/04/27 Javascript
一个可以随意添加多个序列的tag函数
2009/07/21 Javascript
jQuery的写法不同导致的兼容性问题的解决方法
2010/07/29 Javascript
form表单中去掉默认的enter键提交并绑定js方法实现代码
2013/04/01 Javascript
JS函数重载的解决方案
2014/05/13 Javascript
jQuery实现简单的间隔向上滚动效果
2015/03/09 Javascript
在JavaScript中处理字符串之fontcolor()方法的使用
2015/06/08 Javascript
JavaScript清空数组元素的两种方法简单比较
2015/07/10 Javascript
JavaScript创建对象的方式小结(4种方式)
2015/12/17 Javascript
javascript运动效果实例总结(放大缩小、滑动淡入、滚动)
2016/01/08 Javascript
深入理解Vue 组件之间传值
2018/08/16 Javascript
[00:53]2015国际邀请赛 中国区预选赛一触即发
2015/05/14 DOTA
Python不规范的日期字符串处理类
2014/06/10 Python
python中的函数用法入门教程
2014/09/02 Python
Python对象属性自动更新操作示例
2018/06/15 Python
使用Python读取二进制文件的实例讲解
2018/07/09 Python
Selenium鼠标与键盘事件常用操作方法示例
2018/08/13 Python
使用python实现CGI环境搭建过程解析
2020/04/28 Python
利用python绘制正态分布曲线
2021/01/04 Python
HTML5+CSS3实现无插件拖拽上传图片(支持预览与批量)
2017/01/05 HTML / CSS
HTML5实现自带进度条和滑块滑杆效果
2018/04/17 HTML / CSS
智乐游戏测试笔试题
2014/05/21 面试题
高三毕业生自我鉴定
2013/12/20 职场文书
学术会议欢迎词
2014/01/09 职场文书
《金钱的魔力》教学反思
2014/02/24 职场文书
老师对学生的寄语
2014/04/09 职场文书
厨房领班竞聘演讲稿
2014/04/23 职场文书
事业单位鉴定材料
2014/05/25 职场文书
应急管理培训方案
2014/06/12 职场文书
辞职信格式模板
2015/02/27 职场文书
单位推荐信范文
2015/03/27 职场文书
2015年实习生工作总结报告
2015/04/28 职场文书
2016年大学光棍节活动总结
2016/04/05 职场文书
详解Flask开发技巧之异常处理
2021/06/15 Python
直播实况, OMG破敌三路五十分钟大战神技局摩托车
2022/04/01 DOTA