Python Numpy计算各类距离的方法


Posted in Python onJuly 05, 2019

详细:

1.闵可夫斯基距离(Minkowski Distance)

2.欧氏距离(Euclidean Distance)

3.曼哈顿距离(Manhattan Distance)

4.切比雪夫距离(Chebyshev Distance)

5.夹角余弦(Cosine)

6.汉明距离(Hamming distance)

7.杰卡德相似系数(Jaccard similarity coefficient)

8.贝叶斯公式

1.闵氏距离的定义:

两个n维变量A(x11,x12,…,x1n)与 B(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

Python Numpy计算各类距离的方法

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

根据变参数的不同,闵氏距离可以表示一类的距离。

np.linalg.norm #是适合使用这个公式

2.欧氏距离(Euclidean Distance)

欧氏距离(L2范数)是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式(如图1.9)。

Python Numpy计算各类距离的方法

python实现欧式距离公式的:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op1=np.sqrt(np.sum(np.square(vector1-vector2)))
op2=np.linalg.norm(vector1-vector2)
print(op1)
print(op2)
#输出:
#5.19615242271
#5.19615242271

3.曼哈顿距离(Manhattan Distance)

从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”(L1范数)。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)(如图1.10)。

Python Numpy计算各类距离的方法

python实现曼哈顿距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op3=np.sum(np.abs(vector1-vector2))
op4=np.linalg.norm(vector1-vector2,ord=1)
#输出
#9
#9.0

4.切比雪夫距离(Chebyshev Distance)

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个(如图1.11)。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(| x2-x1| , |y2-y1| ) 步。有一种类似的一种距离度量方法叫切比雪夫距离(L∞范数)。

Python Numpy计算各类距离的方法

 Python实现切比雪夫距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
op5=np.abs(vector1-vector2).max()
op6=np.linalg.norm(vector1-vector2,ord=np.inf)
print(op5)
print(op6)
#输出:
#5
#5.0

5. 夹角余弦(Cosine)

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.12)。

Python Numpy计算各类距离的方法

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

Python Numpy计算各类距离的方法

(2) 两个n维样本点A (x11,x12,…,x1n)与 B(x21,x22,…,x2n)的夹角余弦
类似的,对于两个n维样本点A(x11,x12,…,x1n)与 B(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

Python Numpy计算各类距离的方法

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现夹角余弦

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
 
op7=np.dot(vector1,vector2)/(np.linalg.norm(vector1)*(np.linalg.norm(vector2)))
print(op7)
#输出
#0.929669680201

6. 汉明距离(Hamming distance)

(1)汉明距离的定义

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2) python实现汉明距离:

v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
smstr=np.nonzero(v1-v2)
print(smstr) # 不为0 的元素的下标
sm= np.shape(smstr[0])[0] 
print( sm )
#输出
#(array([0, 2, 3, 5, 6, 7]),)
#6

7. 杰卡德相似系数(Jaccard similarity coefficient)

(1) 杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

Python Numpy计算各类距离的方法

(2) 杰卡德距离

与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

Python Numpy计算各类距离的方法

杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3) 杰卡德相似系数与杰卡德距离的应用

可将杰卡德相似系数用在衡量样本的相似度上。

样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

P:样本A与B都是1的维度的个数

q:样本A是1,样本B是0的维度的个数

r:样本A是0,样本B是1的维度的个数

s:样本A与B都是0的维度的个数

那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

Python Numpy计算各类距离的方法

 Python实现杰卡德距离:

import scipy.spatial.distance as dist
 
v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
 
matv=np.array([v1,v2])
print(matv)
ds=dist.pdist(matv,'jaccard')
print(ds)
 
#输出
#[[1 1 0 1 0 1 0 0 1] [0 1 1 0 0 0 1 1 1]]
 
# [ 0.75]

8. 经典贝叶斯公式

原: P(AB)=P(A | B)·P(B)=P(B | A)·P(A)

Python Numpy计算各类距离的方法

本例,我们不去研究黄色的苹果与黄色的梨有什么差别。而承认其统计规律:苹果是红色的概率是0.8,苹果是黄色的概率就是1-0.8=0.2,而梨是黄色的概率是0.9,将其作为先验概率。有了这个先验概率,就可以利用抽样,即任取一个水果,前提是抽样对总体的概率分布没有影响,通过它的某个特征来划分其所属的类别。黄色是苹果和梨共有的特征,因此,既有可能是苹果也有可能是梨,概率计算的意义在于得到这个水果更有可能的那一种。

条件: 10个苹果10个梨子

用数学的语言来表达,就是已知:

# P(苹果)=10/(10+10),P(梨)=10/(10+10),P(黄色|苹果)=20%,P(黄色|梨)=90%,P(黄色)= 20% * 0.5 + 90% * 0.5 = 55%

求P(梨|黄色):

# = P(黄色|梨)P(梨)/P(黄色)
 
# = 81.8%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 字典(dict)按键和值排序
Jun 28 Python
django 创建过滤器的实例详解
Aug 14 Python
python实现微信自动回复功能
Apr 11 Python
Python3 jupyter notebook 服务器搭建过程
Nov 30 Python
python 实现返回一个列表中出现次数最多的元素方法
Jun 11 Python
python获取当前文件路径以及父文件路径的方法
Jul 10 Python
centos7之Python3.74安装教程
Aug 15 Python
python-Web-flask-视图内容和模板知识点西宁街
Aug 23 Python
Python更换pip源方法过程解析
May 19 Python
使用Keras加载含有自定义层或函数的模型操作
Jun 10 Python
Django URL参数Template反向解析
Nov 24 Python
python中__slots__节约内存的具体做法
Jul 04 Python
ERLANG和PYTHON互通实现过程详解
Jul 05 #Python
python如何读取bin文件并下发串口
Jul 05 #Python
anaconda如何查看并管理python环境
Jul 05 #Python
python笔记之mean()函数实现求取均值的功能代码
Jul 05 #Python
python如何给字典的键对应的值为字典项的字典赋值
Jul 05 #Python
python调用并链接MATLAB脚本详解
Jul 05 #Python
python实现最大子序和(分治+动态规划)
Jul 05 #Python
You might like
PHP面向对象分析设计的61条军规小结
2010/07/17 PHP
PHP防CC攻击实现代码
2011/12/29 PHP
PHP实现把文本中的URL转换为链接的auolink()函数分享
2014/07/29 PHP
smarty内置函数foreach用法实例
2015/01/22 PHP
php准确计算复活节日期的方法
2015/04/18 PHP
使用Huagepage和PGO来提升PHP7的执行性能
2015/11/30 PHP
PHP利用缓存处理用户注册时的邮箱验证,成功后用户数据存入数据库操作示例
2019/12/31 PHP
seajs中模块的解析规则详解和模块使用总结
2014/03/12 Javascript
javascript获取dom的下一个节点方法
2014/09/05 Javascript
日常收藏的jquery技巧
2015/12/02 Javascript
jQuery实现立体式数字滚动条增加效果
2016/12/21 Javascript
微信小程序 弹幕功能简单实例
2017/02/14 Javascript
nodejs入门教程一:概念与用法简介
2017/04/24 NodeJs
Javascript 一些需要注意的细节(必看篇)
2017/07/08 Javascript
Vue 去除路径中的#号
2018/04/19 Javascript
微信小程序实现发红包功能
2018/07/11 Javascript
微信小程序实现选择地址省市区三级联动
2020/06/21 Javascript
python3.0 字典key排序
2008/12/24 Python
python采用requests库模拟登录和抓取数据的简单示例
2014/07/05 Python
详细解析Python中的变量的数据类型
2015/05/13 Python
栈和队列数据结构的基本概念及其相关的Python实现
2015/08/24 Python
Python实现简单的四则运算计算器
2016/11/02 Python
详解Python连接MySQL数据库的多种方式
2019/04/16 Python
Python将主机名转换为IP地址的方法
2019/08/14 Python
PyCharm专业最新版2019.1安装步骤(含激活码)
2019/10/09 Python
香港现代设计家具品牌:Ziinlife Furniture
2018/11/13 全球购物
C++是不是类型安全的
2014/02/18 面试题
给老师的道歉信
2014/01/11 职场文书
函授毕业个人自我评价
2014/02/20 职场文书
领导干部作风建设总结
2014/10/23 职场文书
四川省传达学习贯彻党的群众路线教育实践活动总结大会精神新闻稿
2014/10/26 职场文书
2014年网络管理员工作总结
2014/12/01 职场文书
2014年高一班主任工作总结
2014/12/05 职场文书
2016年公司中秋节致辞
2015/11/26 职场文书
2016干部作风整顿心得体会
2016/01/22 职场文书
使用python将HTML转换为PDF pdfkit包(wkhtmltopdf) 的使用方法
2022/04/21 Python