Python Numpy计算各类距离的方法


Posted in Python onJuly 05, 2019

详细:

1.闵可夫斯基距离(Minkowski Distance)

2.欧氏距离(Euclidean Distance)

3.曼哈顿距离(Manhattan Distance)

4.切比雪夫距离(Chebyshev Distance)

5.夹角余弦(Cosine)

6.汉明距离(Hamming distance)

7.杰卡德相似系数(Jaccard similarity coefficient)

8.贝叶斯公式

1.闵氏距离的定义:

两个n维变量A(x11,x12,…,x1n)与 B(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

Python Numpy计算各类距离的方法

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

根据变参数的不同,闵氏距离可以表示一类的距离。

np.linalg.norm #是适合使用这个公式

2.欧氏距离(Euclidean Distance)

欧氏距离(L2范数)是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式(如图1.9)。

Python Numpy计算各类距离的方法

python实现欧式距离公式的:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op1=np.sqrt(np.sum(np.square(vector1-vector2)))
op2=np.linalg.norm(vector1-vector2)
print(op1)
print(op2)
#输出:
#5.19615242271
#5.19615242271

3.曼哈顿距离(Manhattan Distance)

从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”(L1范数)。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)(如图1.10)。

Python Numpy计算各类距离的方法

python实现曼哈顿距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op3=np.sum(np.abs(vector1-vector2))
op4=np.linalg.norm(vector1-vector2,ord=1)
#输出
#9
#9.0

4.切比雪夫距离(Chebyshev Distance)

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个(如图1.11)。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(| x2-x1| , |y2-y1| ) 步。有一种类似的一种距离度量方法叫切比雪夫距离(L∞范数)。

Python Numpy计算各类距离的方法

 Python实现切比雪夫距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
op5=np.abs(vector1-vector2).max()
op6=np.linalg.norm(vector1-vector2,ord=np.inf)
print(op5)
print(op6)
#输出:
#5
#5.0

5. 夹角余弦(Cosine)

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.12)。

Python Numpy计算各类距离的方法

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

Python Numpy计算各类距离的方法

(2) 两个n维样本点A (x11,x12,…,x1n)与 B(x21,x22,…,x2n)的夹角余弦
类似的,对于两个n维样本点A(x11,x12,…,x1n)与 B(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

Python Numpy计算各类距离的方法

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现夹角余弦

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
 
op7=np.dot(vector1,vector2)/(np.linalg.norm(vector1)*(np.linalg.norm(vector2)))
print(op7)
#输出
#0.929669680201

6. 汉明距离(Hamming distance)

(1)汉明距离的定义

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2) python实现汉明距离:

v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
smstr=np.nonzero(v1-v2)
print(smstr) # 不为0 的元素的下标
sm= np.shape(smstr[0])[0] 
print( sm )
#输出
#(array([0, 2, 3, 5, 6, 7]),)
#6

7. 杰卡德相似系数(Jaccard similarity coefficient)

(1) 杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

Python Numpy计算各类距离的方法

(2) 杰卡德距离

与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

Python Numpy计算各类距离的方法

杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3) 杰卡德相似系数与杰卡德距离的应用

可将杰卡德相似系数用在衡量样本的相似度上。

样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

P:样本A与B都是1的维度的个数

q:样本A是1,样本B是0的维度的个数

r:样本A是0,样本B是1的维度的个数

s:样本A与B都是0的维度的个数

那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

Python Numpy计算各类距离的方法

 Python实现杰卡德距离:

import scipy.spatial.distance as dist
 
v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
 
matv=np.array([v1,v2])
print(matv)
ds=dist.pdist(matv,'jaccard')
print(ds)
 
#输出
#[[1 1 0 1 0 1 0 0 1] [0 1 1 0 0 0 1 1 1]]
 
# [ 0.75]

8. 经典贝叶斯公式

原: P(AB)=P(A | B)·P(B)=P(B | A)·P(A)

Python Numpy计算各类距离的方法

本例,我们不去研究黄色的苹果与黄色的梨有什么差别。而承认其统计规律:苹果是红色的概率是0.8,苹果是黄色的概率就是1-0.8=0.2,而梨是黄色的概率是0.9,将其作为先验概率。有了这个先验概率,就可以利用抽样,即任取一个水果,前提是抽样对总体的概率分布没有影响,通过它的某个特征来划分其所属的类别。黄色是苹果和梨共有的特征,因此,既有可能是苹果也有可能是梨,概率计算的意义在于得到这个水果更有可能的那一种。

条件: 10个苹果10个梨子

用数学的语言来表达,就是已知:

# P(苹果)=10/(10+10),P(梨)=10/(10+10),P(黄色|苹果)=20%,P(黄色|梨)=90%,P(黄色)= 20% * 0.5 + 90% * 0.5 = 55%

求P(梨|黄色):

# = P(黄色|梨)P(梨)/P(黄色)
 
# = 81.8%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现字符串和日期相互转换的方法
May 13 Python
python自动zip压缩目录的方法
Jun 28 Python
Python数据类型详解(一)字符串
May 08 Python
Python实现优先级队列结构的方法详解
Jun 02 Python
详解Python 序列化Serialize 和 反序列化Deserialize
Aug 20 Python
Python数据结构与算法之图结构(Graph)实例分析
Sep 05 Python
Python利用字典将两个通讯录文本合并为一个文本实例
Jan 16 Python
利用numpy和pandas处理csv文件中的时间方法
Apr 19 Python
python实现屏保计时器的示例代码
Aug 08 Python
Python JSON格式数据的提取和保存的实现
Mar 22 Python
python中如何实现将数据分成训练集与测试集的方法
Sep 13 Python
Django 框架模型操作入门教程
Nov 05 Python
ERLANG和PYTHON互通实现过程详解
Jul 05 #Python
python如何读取bin文件并下发串口
Jul 05 #Python
anaconda如何查看并管理python环境
Jul 05 #Python
python笔记之mean()函数实现求取均值的功能代码
Jul 05 #Python
python如何给字典的键对应的值为字典项的字典赋值
Jul 05 #Python
python调用并链接MATLAB脚本详解
Jul 05 #Python
python实现最大子序和(分治+动态规划)
Jul 05 #Python
You might like
PHP 日期时间函数的高级应用技巧
2009/10/10 PHP
php的ZipArchive类用法实例
2014/10/20 PHP
php单例模式示例分享
2015/02/12 PHP
php如何获取文件的扩展名
2015/10/28 PHP
在php的yii2框架中整合hbase库的方法
2018/09/20 PHP
Laravel中10个有用的用法小结
2019/05/06 PHP
Javascript valueOf 使用方法
2008/12/28 Javascript
Javascript在IE或Firefox下获取鼠标位置的代码
2009/12/18 Javascript
js监听表单value的修改同步问题,跨浏览器支持
2009/12/31 Javascript
Javascript 中的 call 和 apply使用介绍
2012/02/22 Javascript
深入理解JavaScript 闭包究竟是什么
2013/04/12 Javascript
JavaScript网页定位详解
2014/01/13 Javascript
JavaScript 表单处理实现代码
2015/04/13 Javascript
九种原生js动画效果
2015/11/11 Javascript
js基于cookie方式记住返回页面用法示例
2016/05/27 Javascript
Angular ng-repeat指令实例以及扩展部分
2016/12/26 Javascript
Web 开发中Ajax的Session 超时处理方法
2017/01/19 Javascript
使用 Node.js 模拟滑动拼图验证码操作的示例代码
2017/11/02 Javascript
VueJs 将接口用webpack代理到本地的方法
2017/11/27 Javascript
vue2单元测试环境搭建
2018/05/24 Javascript
解决vue路由后界面没有变化,但是链接有的问题
2018/09/01 Javascript
关于Vue源码vm.$watch()内部原理详解
2019/04/26 Javascript
python cookielib 登录人人网的实现代码
2012/12/19 Python
python3序列化与反序列化用法实例
2015/05/26 Python
Tensorflow实现卷积神经网络的详细代码
2018/05/24 Python
Django实现CAS+OAuth2的方法示例
2019/10/30 Python
python Django框架实现web端分页呈现数据
2019/10/31 Python
CSS3 filter(滤镜)实现网页灰色或者黑色模式的示例代码
2021/02/24 HTML / CSS
澳大利亚首屈一指的鞋类品牌:Tony Bianco
2018/03/13 全球购物
关于.NET, HTML的五个问题
2012/08/29 面试题
英语自我评价范文
2014/01/24 职场文书
让生命充满爱演讲稿
2014/05/10 职场文书
解放思想演讲稿
2014/09/11 职场文书
个人查摆剖析材料
2014/10/04 职场文书
电台广播稿范文
2015/08/19 职场文书
HTML5来实现本地文件读取和写入的实现方法
2021/05/25 HTML / CSS