使用OpenCV获取图片连通域数量,并用不同颜色标记函


Posted in Python onJune 04, 2020

一,原图和效果图

使用OpenCV获取图片连通域数量,并用不同颜色标记函

二,代码

//#########################产生随机颜色#########################
cv::Scalar icvprGetRandomColor()
{
	uchar r = 255 * (rand() / (1.0 + RAND_MAX));
	uchar g = 255 * (rand() / (1.0 + RAND_MAX));
	uchar b = 255 * (rand() / (1.0 + RAND_MAX));
	return cv::Scalar(b, g, r);
}
//#########################产生随机颜色#########################

//########################种子填充法)#########################
void ConnectedCountBySeedFill(const cv::Mat& _binImg, cv::Mat& _lableImg, int &iConnectedAreaCount)
{
  //拓宽1个像素的原因是:如果连通域在边缘,运行此函数会异常崩溃,所以需要在周围加一圈0值,确保连通域不在边上
	//==========图像周围拓宽1个像素============================================
	int top, bottom;      //【添加边界后的图像尺寸】
	int leftImage, rightImage;
	int borderType = BORDER_CONSTANT; //BORDER_REPLICATE
	//【初始化参数】
	top = (int)(1); bottom = (int)(1);
	leftImage = (int)(1); rightImage = (int)(1);
	Mat _binImg2, _binImg3;
	_binImg.copyTo(_binImg2);
		//初始化参数value
		Scalar value(0); //填充值
		//创建图像边界
		copyMakeBorder(_binImg2, _binImg3, top, bottom, leftImage, rightImage, borderType, value);

	//==========图像周围拓宽1个像素============================================

	// connected component analysis (4-component) 
	// use seed filling algorithm 
	// 1. begin with a foreground pixel and push its foreground neighbors into a stack; 
	// 2. pop the top pixel on the stack and label it with the same label until the stack is empty 
	//  
	// foreground pixel: _binImg(x,y) = 1 
	// background pixel: _binImg(x,y) = 0 

	if (_binImg3.empty() ||
		_binImg3.type() != CV_8UC1)
	{
		return;
	}

	_lableImg.release();
	_binImg3.convertTo(_lableImg, CV_32SC1);
	int icount = 0;
	int label = 1; // start by 2 

	int rows = _binImg3.rows - 1;
	int cols = _binImg3.cols - 1;
	for (int i = 1; i < rows - 1; i++)
	{
		int* data = _lableImg.ptr<int>(i);  //取一行数据
		for (int j = 1; j < cols - 1; j++)
		{
			if (data[j] == 1)  //像素不为0
			{
				std::stack<std::pair<int, int>> neighborPixels;   //新建一个栈
				neighborPixels.push(std::pair<int, int>(i, j));   // 像素坐标: <i,j> ,以该像素为起点,寻找连通域 
				++label; // 开始一个新标签,各连通域区别的标志
				while (!neighborPixels.empty())
				{
					// 获取堆栈中的顶部像素并使用相同的标签对其进行标记
					std::pair<int, int> curPixel = neighborPixels.top();
					int curX = curPixel.first;
					int curY = curPixel.second;
					_lableImg.at<int>(curX, curY) = label; //对图像对应位置的点进行标记

					// 弹出顶部像素  (顶部像素出栈)
					neighborPixels.pop();

						// 加入8邻域点
						if (_lableImg.at<int>(curX, curY - 1) == 1)
						{// 左点 
							neighborPixels.push(std::pair<int, int>(curX, curY - 1)); //左边点入栈
						}

						if (_lableImg.at<int>(curX, curY + 1) == 1)
						{// 右点 
							neighborPixels.push(std::pair<int, int>(curX, curY + 1)); //右边点入栈
						}

						if (_lableImg.at<int>(curX - 1, curY) == 1)
						{// 上点 
							neighborPixels.push(std::pair<int, int>(curX - 1, curY)); //上边点入栈
						}

						if (_lableImg.at<int>(curX + 1, curY) == 1)
						{// 下点 
							neighborPixels.push(std::pair<int, int>(curX + 1, curY)); //下边点入栈
						}
						//===============补充到8连通域======================================================
						if (_lableImg.at<int>(curX - 1, curY - 1) == 1)
						{// 左上点 
							neighborPixels.push(std::pair<int, int>(curX - 1, curY - 1)); //左上点入栈
						}

						if (_lableImg.at<int>(curX - 1, curY + 1) == 1)
						{// 右上点 
							neighborPixels.push(std::pair<int, int>(curX - 1, curY + 1)); //右上点入栈
						}

						if (_lableImg.at<int>(curX + 1, curY - 1) == 1)
						{// 左下点 
							neighborPixels.push(std::pair<int, int>(curX + 1, curY - 1)); //左下点入栈
						}

						if (_lableImg.at<int>(curX + 1, curY + 1) == 1)
						{// 右下点 
							neighborPixels.push(std::pair<int, int>(curX + 1, curY + 1)); //右下点入栈
						}
					//===============补充到8连通域======================================================
				}
			}
		}
	}
	iConnectedAreaCount = label - 1; //因为label从2开始计数的
	int a = 0;
}
###########################################################
//#############添加颜色#####################################
Mat PaintColor(Mat src, int iConnectedAreaCount)
{
	int rows = src.rows;
	int cols = src.cols;

	//cv::Scalar(b, g, r);
	std::map<int, cv::Scalar> colors;
	for (int n = 1; n <= iConnectedAreaCount + 1; n++)
	{
		colors[n] = icvprGetRandomColor(); //根据不同标志位产生随机颜色

		cv::Scalar color = colors[n];
		int a = color[0];
		int b = color[1];
		int c = color[2];
		int d = 0;
	}

	Mat dst2(rows, cols, CV_8UC3);
	dst2 = cv::Scalar::all(0);
	for (int i = 0; i < rows; i++)
	{
		for (int j = 0; j < cols; j++)
		{
			int value = src.at<int>(i, j);
			if (value>1)
			{
				cv::Scalar color = colors[value];
				int a = color[0];
				int b = color[1];
				int c = color[2];
				dst2.at<Vec3b>(i, j)[0] = color[0];
				dst2.at<Vec3b>(i, j)[1] = color[1];
				dst2.at<Vec3b>(i, j)[2] = color[2];
			}
		}
	}
	return dst2;
}
//#############添加颜色##################################

//########调用##########################################
  Mat binImage = cv::imread("D:\\sxl\\处理图片\\testImages\\22.jpg", 0);
	threshold(binImage, binImage, 50, 1, CV_THRESH_BINARY_INV);

	// 连通域标记 
	Mat labelImg;
	int iConnectedAreaCount = 0; //连通域个数
	ConnectedCountBySeedFill(binImage, labelImg, iConnectedAreaCount);//针对黑底白字
	int a=iConnectedAreaCount;
	
	// 显示结果
	Mat dstColor2=PaintColor(labelImg,iConnectedAreaCount);
	imshow("colorImg", dstColor2);

	Mat grayImg;
	labelImg *= 10;
	labelImg.convertTo(grayImg, CV_8UC1);
	imshow("labelImg", grayImg);

	waitKey(0);
//########调用##########################################

补充知识:Opencv快速获取连通域

对于ndarray数据中的连通域查找,opencv提供了接口,非常方便。

import cv2
import numpy as np

img = np.array([
  [0, 255, 255, 0, 0, 0, 255, 255,],
  [0, 0, 255, 0, 255, 255, 255, 0],
  [0, 0, 0, 0, 255, 255, 0, 255],
  [255, 255, 0, 0, 0, 0, 0, 0],
  [255, 255, 0, 0, 0, 0, 0, 0],
  [255, 255, 0, 0, 0, 0, 0, 0]
], dtype=np.uint8)

num, labels = cv2.connectedComponents(img)
labels_dict = {i:[] for i in range(1, num+1)}
height, width = img.shape
for h in range(height):
  for w in range(width):
    if labels[h][w] in labels_dict:
      labels_dict[labels[h][w]].append([h,w])

cv2.connectedComponents()函数返回查找到的连通域个数和对应的label。

上面代码返回连通域个数为4(包含值为0区域,可通过lables过滤), labels结果如图所示:

使用OpenCV获取图片连通域数量,并用不同颜色标记函

以上这篇使用OpenCV获取图片连通域数量,并用不同颜色标记函就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
新手该如何学python怎么学好python?
Oct 07 Python
Python调用命令行进度条的方法
May 05 Python
Python通过正则表达式选取callback的方法
Jul 18 Python
django 常用orm操作详解
Sep 13 Python
基于python的多进程共享变量正确打开方式
Apr 28 Python
python对list中的每个元素进行某种操作的方法
Jun 29 Python
Python实现多线程的两种方式分析
Aug 29 Python
PyCharm2019安装教程及其使用(图文教程)
Sep 29 Python
python 数据库查询返回list或tuple实例
May 15 Python
Python2手动安装更新pip过程实例解析
Jul 16 Python
python实现跨年表白神器--你值得拥有
Jan 04 Python
Python基础数据类型tuple元组的概念与用法
Aug 02 Python
Python urllib2运行过程原理解析
Jun 04 #Python
Python如何生成xml文件
Jun 04 #Python
基于python代码批量处理图片resize
Jun 04 #Python
Python脚本如何在bilibili中查找弹幕发送者
Jun 04 #Python
Python爬虫谷歌Chrome F12抓包过程原理解析
Jun 04 #Python
python实现按键精灵找色点击功能教程,使用pywin32和Pillow库
Jun 04 #Python
解决python图像处理图像赋值后变为白色的问题
Jun 04 #Python
You might like
php Smarty 字符比较代码
2011/02/27 PHP
PHP去掉从word直接粘贴过来的没有用格式的函数
2012/10/29 PHP
php使用curl和正则表达式抓取网页数据示例
2014/04/13 PHP
PHP图形计数器程序显示网站用户浏览量
2016/07/20 PHP
PHP isset()与empty()的使用区别详解
2017/02/10 PHP
PHP设计模式之抽象工厂模式实例分析
2019/03/25 PHP
mouse_on_title.js
2006/08/25 Javascript
用jquery实现下拉菜单效果的代码
2010/07/25 Javascript
验证手机号码的JS方法分享
2013/09/10 Javascript
JS控制图片翻转示例代码(兼容firefox,ie,chrome)
2013/12/19 Javascript
javascript 实现子父窗体互相传值的简单实例
2014/02/17 Javascript
jQuery选择器全集详解
2014/11/24 Javascript
AngularJS使用angular-formly进行表单验证
2015/12/27 Javascript
JavaScript操作class和style样式代码详解
2016/02/13 Javascript
Bootstrap Metronic完全响应式管理模板之菜单栏学习笔记
2016/07/08 Javascript
js将table的每个td的内容自动赋值给其title属性的方法
2016/10/13 Javascript
JavaScript定时器实现的原理分析
2016/12/06 Javascript
基于bootstrap实现bootstrap中文网巨幕效果
2017/05/02 Javascript
利用百度地图API获取当前位置信息的实例
2017/11/06 Javascript
nodejs语言实现验证码生成功能的示例代码
2019/10/13 NodeJs
Vue中fragment.js使用方法小结
2020/02/17 Javascript
搭建vscode+vue环境的详细教程
2020/08/31 Javascript
JS实现鼠标移动拖尾
2020/12/27 Javascript
[01:20:47]DOTA2-DPC中国联赛 正赛 Ehome vs Magma BO3 第一场 1月19日
2021/03/11 DOTA
python解析json实例方法
2013/11/19 Python
Python使用MyQR制作专属动态彩色二维码功能
2019/06/04 Python
Python切割图片成九宫格的示例代码
2020/03/10 Python
俄罗斯最大的消费电子连锁零售商:Mvideo
2017/06/25 全球购物
《在山的那边》教学反思
2014/02/23 职场文书
物流管理专业毕业生求职信
2014/03/23 职场文书
青年文明号创建承诺
2014/03/31 职场文书
公司经营目标责任书
2015/01/29 职场文书
刑事辩护词范文
2015/05/21 职场文书
优秀班主任工作总结2015
2015/05/25 职场文书
员工工作心得体会
2019/05/07 职场文书
php 原生分页
2021/04/01 PHP