梅尔频率倒谱系数(mfcc)及Python实现


Posted in Python onJune 18, 2019

语音识别系统的第一步是进行特征提取,mfcc是描述短时功率谱包络的一种特征,在语音识别系统中被广泛应用。

一、mel滤波器

每一段语音信号被分为多帧,每帧信号都对应一个频谱(通过FFT变换实现),频谱表示频率与信号能量之间的关系。mel滤波器是指多个带通滤波器,在mel频率中带通滤波器的通带是等宽的,但在赫兹(Hertz)频谱内mel滤波器在低频处较密集切通带较窄,高频处较稀疏且通带较宽,旨在通过在较低频率处更具辨别性并且在较高频率处较少辨别性来模拟非线性人类耳朵对声音的感知。

赫兹频率和梅尔频率之间的关系为:

梅尔频率倒谱系数(mfcc)及Python实现

假设在梅尔频谱内,有M 个带通滤波器Hm (k),0≤m<M,每个带通滤波器的中心频率为F(m) F(m)F(m)每个带通滤波器的传递函数为:

梅尔频率倒谱系数(mfcc)及Python实现

下图为赫兹频率内的mel滤波器,带通滤波器个数为24:

梅尔频率倒谱系数(mfcc)及Python实现

二、mfcc特征

MFCC系数提取步骤:

(1)语音信号分帧处理
(2)每一帧傅里叶变换---->功率谱
(3)将短时功率谱通过mel滤波器
(4)滤波器组系数取对数
(5)将滤波器组系数的对数进行离散余弦变换(DCT)
(6)一般将第2到底13个倒谱系数保留作为短时语音信号的特征

Python实现

import wave
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.fftpack import dct

def read(data_path):
 '''读取语音信号
 '''
 wavepath = data_path
 f = wave.open(wavepath,'rb')
 params = f.getparams()
 nchannels,sampwidth,framerate,nframes = params[:4] #声道数、量化位数、采样频率、采样点数
 str_data = f.readframes(nframes) #读取音频,字符串格式
 f.close()
 wavedata = np.fromstring(str_data,dtype = np.short) #将字符串转化为浮点型数据
 wavedata = wavedata * 1.0 / (max(abs(wavedata))) #wave幅值归一化
 return wavedata,nframes,framerate

def enframe(data,win,inc):
 '''对语音数据进行分帧处理
 input:data(一维array):语音信号
   wlen(int):滑动窗长
   inc(int):窗口每次移动的长度
 output:f(二维array)每次滑动窗内的数据组成的二维array
 '''
 nx = len(data) #语音信号的长度
 try:
  nwin = len(win)
 except Exception as err:
  nwin = 1 
 if nwin == 1:
  wlen = win
 else:
  wlen = nwin
 nf = int(np.fix((nx - wlen) / inc) + 1) #窗口移动的次数
 f = np.zeros((nf,wlen)) #初始化二维数组
 indf = [inc * j for j in range(nf)]
 indf = (np.mat(indf)).T
 inds = np.mat(range(wlen))
 indf_tile = np.tile(indf,wlen)
 inds_tile = np.tile(inds,(nf,1))
 mix_tile = indf_tile + inds_tile
 f = np.zeros((nf,wlen))
 for i in range(nf):
  for j in range(wlen):
   f[i,j] = data[mix_tile[i,j]]
 return f

def point_check(wavedata,win,inc):
 '''语音信号端点检测
 input:wavedata(一维array):原始语音信号
 output:StartPoint(int):起始端点
   EndPoint(int):终止端点
 '''
 #1.计算短时过零率
 FrameTemp1 = enframe(wavedata[0:-1],win,inc)
 FrameTemp2 = enframe(wavedata[1:],win,inc)
 signs = np.sign(np.multiply(FrameTemp1,FrameTemp2)) # 计算每一位与其相邻的数据是否异号,异号则过零
 signs = list(map(lambda x:[[i,0] [i>0] for i in x],signs))
 signs = list(map(lambda x:[[i,1] [i<0] for i in x], signs))
 diffs = np.sign(abs(FrameTemp1 - FrameTemp2)-0.01)
 diffs = list(map(lambda x:[[i,0] [i<0] for i in x], diffs))
 zcr = list((np.multiply(signs, diffs)).sum(axis = 1))
 #2.计算短时能量
 amp = list((abs(enframe(wavedata,win,inc))).sum(axis = 1))
# # 设置门限
# print('设置门限')
 ZcrLow = max([round(np.mean(zcr)*0.1),3])#过零率低门限
 ZcrHigh = max([round(max(zcr)*0.1),5])#过零率高门限
 AmpLow = min([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量低门限
 AmpHigh = max([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量高门限
 # 端点检测
 MaxSilence = 8 #最长语音间隙时间
 MinAudio = 16 #最短语音时间
 Status = 0 #状态0:静音段,1:过渡段,2:语音段,3:结束段
 HoldTime = 0 #语音持续时间
 SilenceTime = 0 #语音间隙时间
 print('开始端点检测')
 StartPoint = 0
 for n in range(len(zcr)):
  if Status ==0 or Status == 1:
   if amp[n] > AmpHigh or zcr[n] > ZcrHigh:
    StartPoint = n - HoldTime
    Status = 2
    HoldTime = HoldTime + 1
    SilenceTime = 0
   elif amp[n] > AmpLow or zcr[n] > ZcrLow:
    Status = 1
    HoldTime = HoldTime + 1
   else:
    Status = 0
    HoldTime = 0
  elif Status == 2:
   if amp[n] > AmpLow or zcr[n] > ZcrLow:
    HoldTime = HoldTime + 1
   else:
    SilenceTime = SilenceTime + 1
    if SilenceTime < MaxSilence:
     HoldTime = HoldTime + 1
    elif (HoldTime - SilenceTime) < MinAudio:
     Status = 0
     HoldTime = 0
     SilenceTime = 0
    else:
     Status = 3
  elif Status == 3:
   break
  if Status == 3:
   break
 HoldTime = HoldTime - SilenceTime
 EndPoint = StartPoint + HoldTime
 return FrameTemp1[StartPoint:EndPoint]


def mfcc(FrameK,framerate,win):
 '''提取mfcc参数 
 input:FrameK(二维array):二维分帧语音信号
   framerate:语音采样频率
   win:分帧窗长(FFT点数)
 output:
 '''
 #mel滤波器
 mel_bank,w2 = mel_filter(24,win,framerate,0,0.5)
 FrameK = FrameK.T
 #计算功率谱
 S = abs(np.fft.fft(FrameK,axis = 0)) ** 2
 #将功率谱通过滤波器
 P = np.dot(mel_bank,S[0:w2,:])
 #取对数
 logP = np.log(P)
 #计算DCT系数
# rDCT = 12
# cDCT = 24
# dctcoef = []
# for i in range(1,rDCT+1):
#  tmp = [np.cos((2*j+1)*i*math.pi*1.0/(2.0*cDCT)) for j in range(cDCT)]
#  dctcoef.append(tmp)
# #取对数后做余弦变换 
# D = np.dot(dctcoef,logP)
 num_ceps = 12
 D = dct(logP,type = 2,axis = 0,norm = 'ortho')[1:(num_ceps+1),:]
 return S,mel_bank,P,logP,D
 


def mel_filter(M,N,fs,l,h):
 '''mel滤波器
 input:M(int):滤波器个数
   N(int):FFT点数
   fs(int):采样频率
   l(float):低频系数
   h(float):高频系数
 output:melbank(二维array):mel滤波器
 '''
 fl = fs * l #滤波器范围的最低频率
 fh = fs * h #滤波器范围的最高频率
 bl = 1125 * np.log(1 + fl / 700) #将频率转换为mel频率
 bh = 1125 * np.log(1 + fh /700) 
 B = bh - bl #频带宽度
 y = np.linspace(0,B,M+2) #将mel刻度等间距
 print('mel间隔',y)
 Fb = 700 * (np.exp(y / 1125) - 1) #将mel变为HZ
 print(Fb)
 w2 = int(N / 2 + 1)
 df = fs / N
 freq = [] #采样频率值
 for n in range(0,w2):
  freqs = int(n * df)
  freq.append(freqs)
 melbank = np.zeros((M,w2))
 print(freq)
 
 for k in range(1,M+1):
  f1 = Fb[k - 1]
  f2 = Fb[k + 1]
  f0 = Fb[k]
  n1 = np.floor(f1/df)
  n2 = np.floor(f2/df)
  n0 = np.floor(f0/df)
  for i in range(1,w2):
   if i >= n1 and i <= n0:
    melbank[k-1,i] = (i-n1)/(n0-n1)
   if i >= n0 and i <= n2:
    melbank[k-1,i] = (n2-i)/(n2-n0)
  plt.plot(freq,melbank[k-1,:])
 plt.show()
 return melbank,w2

if __name__ == '__main__':
 data_path = 'audio_data.wav'
 win = 256
 inc = 80
 wavedata,nframes,framerate = read(data_path)
 FrameK = point_check(wavedata,win,inc)
 S,mel_bank,P,logP,D = mfcc(FrameK,framerate,win)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
pycharm 使用心得(三)Hello world!
Jun 05 Python
python实现图片变亮或者变暗的方法
Jun 01 Python
Python使用pickle模块存储数据报错解决示例代码
Jan 26 Python
为什么入门大数据选择Python而不是Java?
Mar 07 Python
Python中collections模块的基本使用教程
Dec 07 Python
python实现电子产品商店
Feb 26 Python
如何在mac环境中用python处理protobuf
Dec 25 Python
Python多线程Threading、子线程与守护线程实例详解
Mar 24 Python
scrapy-redis分布式爬虫的搭建过程(理论篇)
Sep 29 Python
Python中生成ndarray实例讲解
Feb 22 Python
python删除csv文件的行列
Apr 06 Python
OpenCV-Python直方图均衡化实现图像去雾
Jun 07 Python
Python生成一个迭代器的实操方法
Jun 18 #Python
利用anaconda保证64位和32位的python共存
Mar 09 #Python
python获取地震信息 微信实时推送
Jun 18 #Python
python实现月食效果实例代码
Jun 18 #Python
详解Python3中setuptools、Pip安装教程
Jun 18 #Python
Python生成指定数量的优惠码实操内容
Jun 18 #Python
python实现文件的备份流程详解
Jun 18 #Python
You might like
php Memcache 中实现消息队列
2009/11/24 PHP
PHP中如何使用session实现保存用户登录信息
2015/10/20 PHP
a标签的css样式四个状态
2021/03/09 HTML / CSS
JavaScript判断两种格式的输入日期的正确性的代码
2007/03/25 Javascript
利用js跨页面保存变量做菜单的方法
2008/01/17 Javascript
js获取图片长和宽度的代码
2009/11/24 Javascript
关于使用 jBox 对话框的提交不能弹出问题解决方法
2012/11/07 Javascript
JavaScript作用域链使用介绍
2013/08/29 Javascript
详解Javascript 装载和执行
2014/11/17 Javascript
SeaJS 与 RequireJS 的差异对比
2014/12/08 Javascript
JavaScript中三种异步上传文件方式
2016/03/06 Javascript
JQuery 设置checkbox值二次无效的解决方法
2016/07/22 Javascript
jQuery简单实现点击文本框复制内容到剪贴板上的方法
2016/08/01 Javascript
vue.js  父向子组件传参的实例代码
2017/10/29 Javascript
jQuery ajax读取本地json文件的实例
2017/10/31 jQuery
详解webpack-dev-server使用http-proxy解决跨域问题
2018/01/13 Javascript
使用webpack编译es6代码的方法步骤
2019/04/28 Javascript
vue封装可复用组件confirm,并绑定在vue原型上的示例
2019/10/31 Javascript
小程序简单两栏瀑布流效果的实现
2019/12/18 Javascript
React学习之JSX与react事件实例分析
2020/01/06 Javascript
JS apply用法总结和使用场景实例分析
2020/03/14 Javascript
pandas 数据实现行间计算的方法
2018/06/08 Python
基于Python的PIL库学习详解
2019/05/10 Python
详解python tkinter包获取本地绝对路径(以获取图片并展示)
2020/09/04 Python
python 中关于pycharm选择运行环境的问题
2020/10/31 Python
10分钟入门CSS3 Animation
2018/12/25 HTML / CSS
Linux如何为某个操作添加别名
2015/02/05 面试题
国庆节文艺活动方案
2014/02/03 职场文书
读书活动总结
2014/04/28 职场文书
生物科学专业毕业生求职信
2014/06/02 职场文书
化学教育专业求职信
2014/07/08 职场文书
2014年助理政工师工作总结
2014/12/19 职场文书
酒店工程部岗位职责
2015/02/12 职场文书
小学语文教学随笔
2015/08/14 职场文书
前端JS获取URL参数的4种方法总结
2022/04/05 Javascript
Go语言编译原理之源码调试
2022/08/05 Golang