梅尔频率倒谱系数(mfcc)及Python实现


Posted in Python onJune 18, 2019

语音识别系统的第一步是进行特征提取,mfcc是描述短时功率谱包络的一种特征,在语音识别系统中被广泛应用。

一、mel滤波器

每一段语音信号被分为多帧,每帧信号都对应一个频谱(通过FFT变换实现),频谱表示频率与信号能量之间的关系。mel滤波器是指多个带通滤波器,在mel频率中带通滤波器的通带是等宽的,但在赫兹(Hertz)频谱内mel滤波器在低频处较密集切通带较窄,高频处较稀疏且通带较宽,旨在通过在较低频率处更具辨别性并且在较高频率处较少辨别性来模拟非线性人类耳朵对声音的感知。

赫兹频率和梅尔频率之间的关系为:

梅尔频率倒谱系数(mfcc)及Python实现

假设在梅尔频谱内,有M 个带通滤波器Hm (k),0≤m<M,每个带通滤波器的中心频率为F(m) F(m)F(m)每个带通滤波器的传递函数为:

梅尔频率倒谱系数(mfcc)及Python实现

下图为赫兹频率内的mel滤波器,带通滤波器个数为24:

梅尔频率倒谱系数(mfcc)及Python实现

二、mfcc特征

MFCC系数提取步骤:

(1)语音信号分帧处理
(2)每一帧傅里叶变换---->功率谱
(3)将短时功率谱通过mel滤波器
(4)滤波器组系数取对数
(5)将滤波器组系数的对数进行离散余弦变换(DCT)
(6)一般将第2到底13个倒谱系数保留作为短时语音信号的特征

Python实现

import wave
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.fftpack import dct

def read(data_path):
 '''读取语音信号
 '''
 wavepath = data_path
 f = wave.open(wavepath,'rb')
 params = f.getparams()
 nchannels,sampwidth,framerate,nframes = params[:4] #声道数、量化位数、采样频率、采样点数
 str_data = f.readframes(nframes) #读取音频,字符串格式
 f.close()
 wavedata = np.fromstring(str_data,dtype = np.short) #将字符串转化为浮点型数据
 wavedata = wavedata * 1.0 / (max(abs(wavedata))) #wave幅值归一化
 return wavedata,nframes,framerate

def enframe(data,win,inc):
 '''对语音数据进行分帧处理
 input:data(一维array):语音信号
   wlen(int):滑动窗长
   inc(int):窗口每次移动的长度
 output:f(二维array)每次滑动窗内的数据组成的二维array
 '''
 nx = len(data) #语音信号的长度
 try:
  nwin = len(win)
 except Exception as err:
  nwin = 1 
 if nwin == 1:
  wlen = win
 else:
  wlen = nwin
 nf = int(np.fix((nx - wlen) / inc) + 1) #窗口移动的次数
 f = np.zeros((nf,wlen)) #初始化二维数组
 indf = [inc * j for j in range(nf)]
 indf = (np.mat(indf)).T
 inds = np.mat(range(wlen))
 indf_tile = np.tile(indf,wlen)
 inds_tile = np.tile(inds,(nf,1))
 mix_tile = indf_tile + inds_tile
 f = np.zeros((nf,wlen))
 for i in range(nf):
  for j in range(wlen):
   f[i,j] = data[mix_tile[i,j]]
 return f

def point_check(wavedata,win,inc):
 '''语音信号端点检测
 input:wavedata(一维array):原始语音信号
 output:StartPoint(int):起始端点
   EndPoint(int):终止端点
 '''
 #1.计算短时过零率
 FrameTemp1 = enframe(wavedata[0:-1],win,inc)
 FrameTemp2 = enframe(wavedata[1:],win,inc)
 signs = np.sign(np.multiply(FrameTemp1,FrameTemp2)) # 计算每一位与其相邻的数据是否异号,异号则过零
 signs = list(map(lambda x:[[i,0] [i>0] for i in x],signs))
 signs = list(map(lambda x:[[i,1] [i<0] for i in x], signs))
 diffs = np.sign(abs(FrameTemp1 - FrameTemp2)-0.01)
 diffs = list(map(lambda x:[[i,0] [i<0] for i in x], diffs))
 zcr = list((np.multiply(signs, diffs)).sum(axis = 1))
 #2.计算短时能量
 amp = list((abs(enframe(wavedata,win,inc))).sum(axis = 1))
# # 设置门限
# print('设置门限')
 ZcrLow = max([round(np.mean(zcr)*0.1),3])#过零率低门限
 ZcrHigh = max([round(max(zcr)*0.1),5])#过零率高门限
 AmpLow = min([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量低门限
 AmpHigh = max([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量高门限
 # 端点检测
 MaxSilence = 8 #最长语音间隙时间
 MinAudio = 16 #最短语音时间
 Status = 0 #状态0:静音段,1:过渡段,2:语音段,3:结束段
 HoldTime = 0 #语音持续时间
 SilenceTime = 0 #语音间隙时间
 print('开始端点检测')
 StartPoint = 0
 for n in range(len(zcr)):
  if Status ==0 or Status == 1:
   if amp[n] > AmpHigh or zcr[n] > ZcrHigh:
    StartPoint = n - HoldTime
    Status = 2
    HoldTime = HoldTime + 1
    SilenceTime = 0
   elif amp[n] > AmpLow or zcr[n] > ZcrLow:
    Status = 1
    HoldTime = HoldTime + 1
   else:
    Status = 0
    HoldTime = 0
  elif Status == 2:
   if amp[n] > AmpLow or zcr[n] > ZcrLow:
    HoldTime = HoldTime + 1
   else:
    SilenceTime = SilenceTime + 1
    if SilenceTime < MaxSilence:
     HoldTime = HoldTime + 1
    elif (HoldTime - SilenceTime) < MinAudio:
     Status = 0
     HoldTime = 0
     SilenceTime = 0
    else:
     Status = 3
  elif Status == 3:
   break
  if Status == 3:
   break
 HoldTime = HoldTime - SilenceTime
 EndPoint = StartPoint + HoldTime
 return FrameTemp1[StartPoint:EndPoint]


def mfcc(FrameK,framerate,win):
 '''提取mfcc参数 
 input:FrameK(二维array):二维分帧语音信号
   framerate:语音采样频率
   win:分帧窗长(FFT点数)
 output:
 '''
 #mel滤波器
 mel_bank,w2 = mel_filter(24,win,framerate,0,0.5)
 FrameK = FrameK.T
 #计算功率谱
 S = abs(np.fft.fft(FrameK,axis = 0)) ** 2
 #将功率谱通过滤波器
 P = np.dot(mel_bank,S[0:w2,:])
 #取对数
 logP = np.log(P)
 #计算DCT系数
# rDCT = 12
# cDCT = 24
# dctcoef = []
# for i in range(1,rDCT+1):
#  tmp = [np.cos((2*j+1)*i*math.pi*1.0/(2.0*cDCT)) for j in range(cDCT)]
#  dctcoef.append(tmp)
# #取对数后做余弦变换 
# D = np.dot(dctcoef,logP)
 num_ceps = 12
 D = dct(logP,type = 2,axis = 0,norm = 'ortho')[1:(num_ceps+1),:]
 return S,mel_bank,P,logP,D
 


def mel_filter(M,N,fs,l,h):
 '''mel滤波器
 input:M(int):滤波器个数
   N(int):FFT点数
   fs(int):采样频率
   l(float):低频系数
   h(float):高频系数
 output:melbank(二维array):mel滤波器
 '''
 fl = fs * l #滤波器范围的最低频率
 fh = fs * h #滤波器范围的最高频率
 bl = 1125 * np.log(1 + fl / 700) #将频率转换为mel频率
 bh = 1125 * np.log(1 + fh /700) 
 B = bh - bl #频带宽度
 y = np.linspace(0,B,M+2) #将mel刻度等间距
 print('mel间隔',y)
 Fb = 700 * (np.exp(y / 1125) - 1) #将mel变为HZ
 print(Fb)
 w2 = int(N / 2 + 1)
 df = fs / N
 freq = [] #采样频率值
 for n in range(0,w2):
  freqs = int(n * df)
  freq.append(freqs)
 melbank = np.zeros((M,w2))
 print(freq)
 
 for k in range(1,M+1):
  f1 = Fb[k - 1]
  f2 = Fb[k + 1]
  f0 = Fb[k]
  n1 = np.floor(f1/df)
  n2 = np.floor(f2/df)
  n0 = np.floor(f0/df)
  for i in range(1,w2):
   if i >= n1 and i <= n0:
    melbank[k-1,i] = (i-n1)/(n0-n1)
   if i >= n0 and i <= n2:
    melbank[k-1,i] = (n2-i)/(n2-n0)
  plt.plot(freq,melbank[k-1,:])
 plt.show()
 return melbank,w2

if __name__ == '__main__':
 data_path = 'audio_data.wav'
 win = 256
 inc = 80
 wavedata,nframes,framerate = read(data_path)
 FrameK = point_check(wavedata,win,inc)
 S,mel_bank,P,logP,D = mfcc(FrameK,framerate,win)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python实现斐波那契(Fibonacci)函数
Mar 25 Python
python中利用h5py模块读取h5文件中的主键方法
Jun 05 Python
python读取LMDB中图像的方法
Jul 02 Python
Python 给屏幕打印信息加上颜色的实现方法
Apr 24 Python
python移位运算的实现
Jul 15 Python
Python将视频或者动态图gif逐帧保存为图片的方法
Sep 10 Python
调用其他python脚本文件里面的类和方法过程解析
Nov 15 Python
Python实现FLV视频拼接功能
Jan 21 Python
Python生成器实现简单&quot;生产者消费者&quot;模型代码实例
Mar 27 Python
面向新手解析python Beautiful Soup基本用法
Jul 11 Python
Python 数据分析之逐块读取文本的实现
Dec 14 Python
Appium中scroll和drag_and_drop根据元素位置滑动
Feb 15 Python
Python生成一个迭代器的实操方法
Jun 18 #Python
利用anaconda保证64位和32位的python共存
Mar 09 #Python
python获取地震信息 微信实时推送
Jun 18 #Python
python实现月食效果实例代码
Jun 18 #Python
详解Python3中setuptools、Pip安装教程
Jun 18 #Python
Python生成指定数量的优惠码实操内容
Jun 18 #Python
python实现文件的备份流程详解
Jun 18 #Python
You might like
Zend公司全球首推PHP认证
2006/10/09 PHP
生成静态页面的php函数,php爱好者站推荐
2007/03/19 PHP
PHP 面向对象详解
2012/09/13 PHP
基于curl数据采集之单页面采集函数get_html的使用
2013/04/28 PHP
PHP的password_hash()使用实例
2014/03/17 PHP
全面解读PHP的Yii框架中的日志功能
2016/03/17 PHP
php array_pop 删除数组最后一个元素实例
2016/11/02 PHP
TypeScript 中接口详解
2015/06/19 Javascript
纯js模拟div层弹性运动的方法
2015/07/27 Javascript
基于HTML模板和JSON数据的JavaScript交互(移动端)
2016/04/06 Javascript
jQuery.form插件的使用及跨域异步上传文件
2016/04/27 Javascript
Javascript字符串拼接小技巧(推荐)
2016/06/02 Javascript
nodejs 的 session 简单使用
2016/06/06 NodeJs
Javascript之面向对象--接口
2016/12/02 Javascript
Vue.js实现分页查询功能
2020/11/15 Javascript
vue.js给动态绑定的radio列表做批量编辑的方法
2018/02/28 Javascript
Layui动态生成select下拉选择框不显示的解决方法
2019/09/24 Javascript
实例分析JS中的相等性判断===、 ==和Object.is()
2019/11/17 Javascript
vue ajax 拦截原理与实现方法示例
2019/11/29 Javascript
vue实现一个矩形标记区域(rectangle marker)的方法
2020/10/28 Javascript
Python制作钉钉加密/解密工具
2016/12/07 Python
python 中split 和 strip的实例详解
2017/07/12 Python
python基础教程项目四之新闻聚合
2018/04/02 Python
python元组的概念知识点
2019/11/19 Python
详解Python 重学requests发起请求的基本方式
2020/02/07 Python
python实现自动清理重复文件
2020/08/24 Python
IE10 Error.stack 让脚本调试更加方便快捷
2013/04/22 HTML / CSS
国外最大的眼镜网站:Coastal
2017/08/09 全球购物
安德玛比利时官网:Under Armour比利时
2019/08/28 全球购物
DataReader和DataSet的异同
2014/12/31 面试题
静态变量和实例变量的区别
2015/07/07 面试题
体育专业个人的求职信范文
2013/09/21 职场文书
播音主持女孩的自我评价分享
2013/11/20 职场文书
任命书格式
2014/06/05 职场文书
学校与家长安全责任书
2014/07/23 职场文书
英国数字版游戏销量周榜公布 《小缇娜的奇幻之地》登顶
2022/04/03 其他游戏