使用Python的SymPy库解决数学运算问题的方法


Posted in Python onMarch 27, 2019

摘要:在学习与科研中,经常会遇到一些数学运算问题,使用计算机完成运算具有速度快和准确性高的优势。Python的Numpy包具有强大的科学运算功能,且具有其他许多主流科学计算语言不具备的免费、开源、轻量级和灵活的特点。本文使用Python语言的NumPy库,解决数学运算问题中的线性方程组问题、积分问题、微分问题及矩阵化简问题,结果准确快捷,具有一定的借鉴意义。

1.Sympy库简介

SymPy一个用于符号型数学计算(symbolic mathematics)的Python库。它旨在成为一个功能齐全的计算机代数系统(Computer Algebra System,CAS),同时保持代码简洁、易于理解和扩展。SymPy完全是用Python写的,并不需要外部的库。

本文选择Sympy库的原因在于:

  • 免费:该库基于BSD开源许可,免费且开源;
  • 基于Python:该库完全是用Python写就,并以Python作为该库操作语言;
  • 轻量级:为了使Sympy简单易用,该库仅基于mpmath库(一个纯Python库,用于浮点运算);
  • 灵活性:除了用作交互工具,还可插入其他应用或软件拓展功能中。

具体说来,如果x与y未曾赋值,那么下列语句就会报错

#测试语句
print(x+y)

而符号运算则不同,符号运算多用于公式推导,不需要赋值,此时使用Sympy进行符号运算便具有方便快捷的优势,如下述语句便不会报错。

#测试语句
x=Symbol('x')
y=Symbol('y')
print(x+y)

2 SymPy库解决数学运算问题实现

2.1 求解线性方程组

解方程的功能主要是使用Sympy中solve函数实现。以式(1)为例,求解过程如下:

(1) 符号表示

SymPy库中使用Symbol函数定义符号变量,

from sympy import *
x=Symbol('x')
y=Symbol('y')
 
#或者用如下语句
x,y=Symbol('x y')#第二个用空格隔开

(2)方程表示

使用代码表示数学符号与手写体的数学运算符号存在一定的差异,下面列举常用的运算符:

  • 加号
  • 加号 +
  • 减号 -
  • 除号 /
  • 乘号 *
  • 指数 **
  • 对数 log()
  • e的指数次幂 exp()

对于长的表达式,如果不确定运算符的优先级,可以加入小括号提升其优先级。由于需要将表达式都转化成右端等于0,这里把常数3和7移到等式左边。题目中表达式可表示为:

2*x-y-3=0
3*x+y-7=0

(3)使用Solve函数解方程

在使用Solve函数解方程之前,我们先来看一下Solve函数的定义。Solve函数的第一个参数是要解的方程,要求右端等于0,第二个参数是未知数。

对于式(1)的求解,代码如下:

from sympy import *
x = Symbol('x')
y = Symbol('y')
print(solve([2*x-y-3,3*x+y-7],[x,y]))

2.2 求解微积分问题

2.2.1 求解极限问题

在2.1中通过一个简单的二元一次方程组求解熟悉了该库求解数学问题的基本过程,下面本文通过示例,讲解使用SymPy库求解微积分的过程。

求解式(2)所示的极限问题,需要用到limit函数求极限。

(1)符号及方程表示

引入Sympy库并定义n为符号变量与2.1中一致。

from sympy import *
n = Symbol('n')
s = ((n+3)/(n+2))**n

(2)利用limit函数求极限

首先我们介绍limit函数的调用格式:limit(e, z, z0, dir='+'),e为任意表达式,表示求取e(z)在点z0处的极限,dir='+'表示取右极限,die='-'则表示取左极限。则上式的求解代码可表示如下:

from sympy import *
n = Symbol('n')
s = ((n+3)/(n+2))**n

print(limit(s,n,oo)) #无穷的表示方法是两个小写的字母o

2.2.2 求解定积分

(1)符号表示

from sympy import *
t = Symbol(t)
x = Symbol(x)

(2)方程表示

m = integrate(sin(t)/(pi-t),(t,0,x))
n = integrate(m,(x,0,pi))

完整代码如下:

from sympy import *
t = Symbol(t)
x = Symbol(x)
m = integrate(sin(t)/(pi-t),(t,0,x))
n = integrate(m,(x,0,pi))
print(n)

2.2.3 求解微分问题

如求取的通解

(1)符号表示

这里与之前不同的是增加了函数的表示(用f(x)表示y),即例题中的y还有微分表示

from sympy import *
f = Function('f')
x = Symbol('x')

y'的表示方法由以下代码组成

diff(f(x),x)

这里对diff函数稍作介绍:

上面是求一阶导的方法,求解高阶导的方法如下所示:

>>> diff(x**3,x)
3*x**2
>>> diff(x**3,x,1)
3*x**2
>>> diff(x**3,x,2)
6*x
>>> diff(x**3,x,3)
6
>>> diff(x**3,x,4)
0

即改变第三个参数即可。

下面继续我们的解题过程。

#左端
diff(f(x),x)
#看一下
print(diff(f(x),x))
 
#result
#d
#--(f(x))
#dx
 
#右端
2*f(x)*x

用dsolve函数解微分方程

dsolve函数是用来解决微分方程(differential equation)的函数。

函数的一个用法为:

dsolve(eq, f(x))

第一个参数为微分方程(要先将等式移项为右端为0的形式)。第二个参数为要解的函数(在微分方程中)

举个例子:

>>> from sympy import *
>>> f = Function('f')
>>> x = Symbol('x')
>>> pprint(2*x-diff(f(x),x))
   d
2*x - --(f(x))
   dx
>>> dsolve(2*x - diff(f(x),x), f(x))
#result
#Eq(f(x), C1 + x**2)

这样,我们可以将我们要解的题目,用以下代码表示。

dsolve(diff(f(x),x) - 2*f(x)*x, f(x))

结果为:

Eq(f(x), C1*exp(x**2))
#即f(x) = C1*exp(x**2)

对比答案可以发现正确。

完整代码:

from sympy import *
f = function('f')
x = Symbol('x')
print(dsolve(diff(f(x),x)-2*f(x)*x,f(x))

2.2.4 矩阵化简

平时线性代数问题中我们会遇到化简问题,虽然不算难,但着实麻烦。而且,出一点错就会导致

结果出错。不过好运的是SymPy提供了相关的支持。

例题:

符号表示与矩阵表示

from sympy import *
x1,x2,x3 = symbols('x1 x2 x3')
a11,a12,a13,a22,a23,a33 = symbols('a11 a12 a13 a22 a23 a33')
m = Matrix([[x1,x2,x3]])
n = Matrix([[a11,a12,a13],[a12,a22,a23],[a13,a23,a33]])
v = Matrix([[x1],[x2],[x3]])

注意m的表示,需要有两个中括号

化简实现

print(m*n*v)

得到的是:

Matrix([[x1*(a11*x1 + a12*x2 + a13*x3) + x2*(a12*x1 + a22*x2 + a23*x3) + x3*(a13*x1 + a23*x2 + a33*x3)]])

使用

f = m * n * v
print f[0]

可以进一步得到化简后的式子

也许你要问我要化简后在计算怎么办?下面我就举个例子。

如果上式中x1,x2,x3均等于1,则可这样代入。

from sympy import *
x1,x2,x3 = symbols('x1 x2 x3')
a11,a12,a13,a22,a23,a33 = symbols('a11 a12 a13 a22 a23 a33')
m = Matrix([[x1, x2, x3]])
n = Matrix([[a11, a12, a13], [a12, a22, a23], [a13, a23, a33]])
v = Matrix([[x1], [x2], [x3]])
f = m * n * v
print f[0].subs({x1:1, x2:1, x3:1})

可得

a11 + 2*a12 + 2*a13 + a22 + 2*a23 + a33

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
php使用递归与迭代实现快速排序示例
Jan 23 Python
python命令行参数解析OptionParser类用法实例
Oct 09 Python
Python实现拷贝多个文件到同一目录的方法
Sep 19 Python
python发送邮件脚本
May 22 Python
django admin后台添加导出excel功能示例代码
May 15 Python
解决pycharm 远程调试 上传 helpers 卡住的问题
Jun 27 Python
Flask框架单例模式实现方法详解
Jul 31 Python
django框架两个使用模板实例
Dec 11 Python
检测tensorflow是否使用gpu进行计算的方式
Feb 03 Python
推荐8款常用的Python GUI图形界面开发框架
Feb 23 Python
tensorflow安装成功import tensorflow 出现问题
Apr 16 Python
基于Python中random.sample()的替代方案
May 23 Python
超简单使用Python换脸实例
Mar 27 #Python
python爬虫爬取微博评论案例详解
Mar 27 #Python
Python实现查找字符串数组最长公共前缀示例
Mar 27 #Python
详解python中@的用法
Mar 27 #Python
详解python列表生成式和列表生成式器区别
Mar 27 #Python
Python3实现的回文数判断及罗马数字转整数算法示例
Mar 27 #Python
详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)
Mar 27 #Python
You might like
php基础学习之变量的使用
2011/06/09 PHP
腾讯QQ微博API接口获取微博内容
2013/10/30 PHP
PHP遍历XML文档所有节点的方法
2015/03/12 PHP
PHP面向对象程序设计组合模式与装饰模式详解
2016/12/02 PHP
PHP实现 APP端微信支付功能
2018/06/22 PHP
PHP7使用ODBC连接SQL Server2008 R2数据库示例【基于thinkPHP5.1框架】
2019/05/06 PHP
laravel validate 设置为中文的例子(验证提示为中文)
2019/09/29 PHP
Jquery中对数组的操作代码
2011/08/12 Javascript
单击复制文字兼容各浏览器的完美解决方案
2013/07/04 Javascript
理解 JavaScript Scoping & Hoisting(二)
2015/11/18 Javascript
理解JS绑定事件
2016/01/19 Javascript
Vue.js自定义指令的用法与实例解析
2017/01/18 Javascript
Vue实现一个返回顶部backToTop组件
2017/07/25 Javascript
浅谈js的解析顺序 作用域 严格模式
2017/10/23 Javascript
angular6根据environments配置文件更改开发所需要的环境的方法
2019/03/06 Javascript
js尾调用优化的实现
2019/05/23 Javascript
Nautil 中使用双向数据绑定的实现
2019/10/02 Javascript
vue 使用外部JS与调用原生API操作示例
2019/12/02 Javascript
如何在微信小程序中存setStorage
2019/12/13 Javascript
vue实现的封装全局filter并统一管理操作示例
2020/02/02 Javascript
Python中变量交换的例子
2014/08/25 Python
python使用PIL缩放网络图片并保存的方法
2015/04/24 Python
python基于phantomjs实现导入图片
2016/05/13 Python
Python第三方库xlrd/xlwt的安装与读写Excel表格
2017/01/21 Python
pandas创建新Dataframe并添加多行的实例
2018/04/08 Python
Python通过调用有道翻译api实现翻译功能示例
2018/07/19 Python
python中redis查看剩余过期时间及用正则通配符批量删除key的方法
2018/07/30 Python
python实现顺时针打印矩阵
2019/03/02 Python
django框架ModelForm组件用法详解
2019/12/11 Python
python GUI库图形界面开发之PyQt5多行文本框控件QTextEdit详细使用方法实例
2020/02/28 Python
Calzedonia美国官网:意大利风格袜子、打底裤和沙滩装
2018/07/19 全球购物
node中使用shell脚本的方法步骤
2021/03/23 Javascript
求职信结尾怎么写
2014/05/26 职场文书
专业技术职务聘任证明
2015/03/02 职场文书
2015秋季开学典礼演讲稿
2015/07/16 职场文书
React如何使用axios请求数据并把数据渲染到组件
2022/08/05 Javascript