Python 数据库操作 SQLAlchemy的示例代码


Posted in Python onFebruary 18, 2019

程序在运行过程中所有的的数据都存储在内存 (RAM) 中,「RAM 是易失性存储器,系统掉电后 RAM 中的所有数据将全部丢失」。在大多数情况下我们希望程序运行中产生的数据能够长久的保存,此时我们就需要将数据保存到磁盘上,无论是保存到本地磁盘,还是通过网络保存到服务器上,最终都会将数据写入磁盘文件。将数据保存在磁盘中我们需要面对一个数据格式的问题,此时就需要引入数据库操作。

数据库是专门用于数据的集中存储和查询的软件,它便于程序保存和读取数据,且能够通过特定的条件查询指定的数据。

Python 的标准数据库接口为 Python DB-API,它为编程人员提供了完善的数据库应用标称接口。但是使用 Python DB-API 需要开发人员自行去拼接 SQL,并把 SQL 做成模板。此时全靠编程人员来保证系统的安全性,完全有人来保证系统的安全性,不可避免的会出现错误,为了减少人为原因产生的错误 ORM 框架应运而生。

ORM 即 Object-Relational Mapping,把关系数据库的表结构映射到对象上面。负责这个转换过程的就是 ORM 框架

Python 中的 ORM 框架主要有 SQLObject、Storm、Django's ORM、peewee、SQLALchemy。每种 ORM 框架都有各自的特点和相应的应用范围,本文主要介绍 SALALchemy,若你对其他框架感兴趣请自行搜索相关内容。

SQLAlchemy 简介

SQLAlchemy 是一个功能强大的开源 Python ORM 工具包。它提供了 “一个知名企业级的持久化模式的,专为高效率和高性能的数据库访问设计的,改编成一个简单的 Python 域语言的完整套件”。它采用了数据映射模式(像 Java 中的 Hibernate)而不是 Active Record 模式(像Ruby on Rails 的 ORM)。

SQLAlchemy官网。

SQLAlchemy 的优缺点:

优点:

  • 企业级 API,使得代码有健壮性和适应性。
  • 灵活的设计,使得能轻松完成复杂的数据查询。

缺点:

  • 工作单元概念不常见。
  • 重量级 API,导致长学习曲线。

SQLAlchemy 应用

以下是一段使用 SQLAlchemy 操作 SQLite 数据库的代码

# -*- coding:utf-8 -*-

from sqlalchemy import (
  create_engine,
  Column,
  Integer,
  String,
)

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///./sqlalchemy.sqlite', echo=True)

Base = declarative_base()

class User(Base):
  __tablename__ = 'users'

  id = Column(Integer, primary_key=True, autoincrement=True)
  name = Column(String)
  fullname = Column(String)
  nickname = Column(String)

  def __repr__(self):
    return "<User(name='%s', fullname='%s', nickname='%s')>" % (self.name, self.fullname, self.nickname)


db_session = sessionmaker(bind=engine)
session = db_session()

Base.metadata.create_all(engine)

user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
user2 = User(name='wendy', fullname='Wendy Williams', nickname='windy')
user3 = User(name='mary', fullname='Mary Contrary', nickname='mary')

session.add(user1)
session.add(user2)
session.add(user3)
session.commit()

user = session.query(User).filter(User.id<2).all()
print(user)
user = session.query(User).filter(User.id<=5).all()
print(user)

user1.name = 'admin'
session.merge(user1)
user4 = User(name='fred', fullname='Fred Flintstone', nickname='freddy')
session.merge(user4)
session.query(User).filter(User.id==2).update({'name':'test'})
user = session.query(User).filter(User.id<=5).all()
print(user)

在以上代码中我们完成了一下工作:

  1. 连接到数据库「本次我们使用的是 SQLite 数据库」。
  2. 创建数据库表并将其映射到 Python 类上。
  3. 创建数据实例,并将其保存到数据库中。
  4. 对保存在数据库中的数据进行读取和修改。

导入 SQLAlchemy 模块并连接到 SQLite 数据库

SQLAlchemy 通过 create_engine 函数来创建数据库连接。create_engine 函数的第一个参数是数据了 URL,第二个参数 echo 设置为 True 表示在程序的运行过程中我们可以在控制台看到操作所涉及到的 SQL 语句。

在本次示例中我们使用的数据库是 SQLite,你也可以使用其他数据库。只有在调试状态下将 echo 设置为 True,在生产环境请将 echo 设置为 false 或省略 echo 参数。

engine = create_engine('sqlite:///./sqlalchemy.sqlite', echo=True)

create_engine 返回的是一个 Engine 实例,它指向数据库的一些核心接口。SQLAlchemy会根据你选择的数据库配置而调用对应的 DB-API。

create_engine 函数并会不真正建立数据库的 DB-API 连接,当调用 Engine.execute() 或 Engine.connect() 方法时才会建立连接。大多数情况下我们无需关注 Engine,SQLAlchemy 会帮我们处理。

创建数据库表

将 python 类映射到数据库表上,这个 Python 类需要时一个指定基类的子类,这个基类应当含有ORM映射中相关的类和表的信息。这个基类可以通过 declarative_base 方法来创建。
Base = declarative_base()

在这个示例中使用 Base 基类创建了一个 User 的类来作为数据库表。

class User(Base):
  __tablename__ = 'users'

  id = Column(Integer, primary_key=True, autoincrement=True)
  name = Column(String)
  fullname = Column(String)
  nickname = Column(String)

  def __repr__(self):
    return "<User(name='%s', fullname='%s', nickname='%s')>" % (self.name, self.fullname, self.nickname)

在 User 类中我们定义了需要映射到数据库表上的属性,主要包括表名称、列的类型和名称等。这个类至少应包含一个名为 tablename 的属性来给出数据库表的名称,及至少一个给出表的主键「primary key」的列。在 User 类中我们定义了表名称为 users,定义了 id、name、fullname、nickname 四列数据,并设置 id 为表的主键。
创建完成 User 类后,实际在 SQLite 数据库中并不存在该表,此时需要使用 declarative 基类的 Metadata.create_all 在数据库中创建 users 表,在 create_all 方法中我们需要传入参数 Engine。

通过 Metadata.create_all 传入的 Engine 参数,SQLAlchemy 自动实现对数据库的连接。

Base.metadata.create_all(engine)

metadata.create_all 方法执行完成后在 SQLite 数据库即可查到名称为 users 的数据表。

保存数据实例到数据库中

将数据保存到数据库中,我们需要 User 的实例和用于操作数据的 session。

session 是 ORM 数据的接口,可以通过 session 来操作数据库中的数据。

使用已经定义完成的 User 类将数据实例化。

user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
user2 = User(name='wendy', fullname='Wendy Williams', nickname='windy')
user3 = User(name='mary', fullname='Mary Contrary', nickname='mary')

获取 session 首先需要使用 sessionmaker 来得到 session 的工厂类,然后通过工厂类来获取 session。

db_session = sessionmaker(bind=engine)
session = db_session()

session 通过 Engine 与数据库进行关联。session 创建完成后并不会立即打开与数据库的连接,只有当我们第一使用 session 是,才会从 Engine 维护的连接池中取出一个连接来操作数据库,这个连接在我们关闭 session 时会被释放。
获取 session 后可以通过 add 和 commit 方法将数据保存到数据库中。

session.add(user1)
session.add(user2)
session.add(user3)
session.commit()

对数据库中的数据进行查询和修改

SQLAlchemy 通过 query 来对数据进行查询,可以通过 filter 方法对查询结果进行筛选。

user = session.query(User).filter(User.id<2).all()
print(user)
user = session.query(User).filter(User.id<=5).all()
print(user)

以上代码通过 query 获取数据库中所有 User 数据,然后通过 filter 方法筛选出 id 小于 2 和 id 小于等于 5 的数据。

数据库的修改可以通过 merge 和 update 来实现

user1.name = 'admin'
session.merge(user1)
user4 = User(name='fred', fullname='Fred Flintstone', nickname='freddy')
session.merge(user4)
session.query(User).filter(User.id==2).update({'name':'test'})
user = session.query(User).filter(User.id<=5).all()
print(user)

使用 merge 修改数据,当数据中存在该数据时修改,不存在是将当前数据插入数据库中。

代码运行结果

以上示例代码的运行结果如下

2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,920 INFO sqlalchemy.engine.base.Engine PRAGMA table_info("users")
2019-02-16 21:45:23,920 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,921 INFO sqlalchemy.engine.base.Engine
CREATE TABLE users (
  id INTEGER NOT NULL,
  name VARCHAR,
  fullname VARCHAR,
  nickname VARCHAR,
  PRIMARY KEY (id)
)


2019-02-16 21:45:23,921 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,922 INFO sqlalchemy.engine.base.Engine COMMIT
2019-02-16 21:45:23,924 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2019-02-16 21:45:23,925 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,925 INFO sqlalchemy.engine.base.Engine ('ed', 'Ed Jones', 'edsnickname')
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine ('wendy', 'Wendy Williams', 'windy')
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine ('mary', 'Mary Contrary', 'mary')
2019-02-16 21:45:23,927 INFO sqlalchemy.engine.base.Engine COMMIT
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id < ?
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine (2,)
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>]
2019-02-16 21:45:23,931 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id <= ?
2019-02-16 21:45:23,931 INFO sqlalchemy.engine.base.Engine (5,)
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>, <User(name='wendy', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>]
2019-02-16 21:45:23,932 INFO sqlalchemy.engine.base.Engine UPDATE users SET name=? WHERE users.id = ?
2019-02-16 21:45:23,932 INFO sqlalchemy.engine.base.Engine ('admin', 1)
2019-02-16 21:45:23,933 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,933 INFO sqlalchemy.engine.base.Engine ('fred', 'Fred Flintstone', 'freddy')
2019-02-16 21:45:23,934 INFO sqlalchemy.engine.base.Engine UPDATE users SET name=? WHERE users.id = ?
2019-02-16 21:45:23,934 INFO sqlalchemy.engine.base.Engine ('test', 2)
2019-02-16 21:45:23,935 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id <= ?
2019-02-16 21:45:23,935 INFO sqlalchemy.engine.base.Engine (5,)
[<User(name='admin', fullname='Ed Jones', nickname='edsnickname')>, <User(name='test', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>, <User(name='fred', fullname='Fred Flintstone', nickname='freddy')>]

由于我们设置 create_engine 中 echo 为 True,因此在执行结果中包含了 SQLAlchemy 打印的 SQL 语句,我们可以取消 crete_engine 中的 echo

engine = create_engine('sqlite:///./sqlalchemy.sqlite')

此时的执行结果如下:

[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>]
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>, <User(name='wendy', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>]
[<User(name='admin', fullname='Ed Jones', nickname='edsnickname')>, <User(name='test', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>, <User(name='fred', fullname='Fred Flintstone', nickname='freddy')>]

当取消 echo 后,程序运行结果中原有的 SQL 语句消失。

本文只是对 SQLAlchemy 的使用进行简单的介绍,SQLAlchemy 本身还有很多特性和运用方法我们可以共同探讨。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中无限元素列表的实现方法
Aug 18 Python
Python虚拟环境Virtualenv使用教程
May 18 Python
Django进阶之CSRF的解决
Aug 01 Python
python实现flappy bird游戏
Dec 24 Python
python time.sleep()是睡眠线程还是进程
Jul 09 Python
Python大数据之网络爬虫的post请求、get请求区别实例分析
Nov 16 Python
matplotlib quiver箭图绘制案例
Apr 17 Python
基于python实现计算两组数据P值
Jul 10 Python
PyQt5的相对布局管理的实现
Aug 07 Python
python 实现单例模式的5种方法
Sep 23 Python
Python pickle模块常用方法代码实例
Oct 10 Python
Django搭建项目实战与避坑细节详解
Dec 06 Python
Python列表常见操作详解(获取,增加,删除,修改,排序等)
Feb 18 #Python
Python File(文件) 方法整理
Feb 18 #Python
Python异常处理知识点总结
Feb 18 #Python
Python os.access()用法实例
Feb 18 #Python
python使用pipeline批量读写redis的方法
Feb 18 #Python
Python变量类型知识点总结
Feb 18 #Python
Python中文编码知识点
Feb 18 #Python
You might like
咖啡店都有些什么常规豆子呢?有什么风味在里面
2021/03/04 咖啡文化
让你成为更出色的PHP开发者的10个技巧
2011/02/25 PHP
解析dedeCMS验证码的实现代码
2013/06/07 PHP
php实现按文件名搜索文件的远程文件查找器
2014/05/10 PHP
Hutia 的 JS 代码集
2006/10/24 Javascript
UpdatePanel和Jquery冲突的解决方法
2013/04/01 Javascript
js操作label给label赋值及取label的值示例
2013/11/07 Javascript
JavaScript中判断函数、变量是否存在
2015/06/10 Javascript
AngularJS中的$watch(),$digest()和$apply()区分
2016/04/04 Javascript
JavaScript DOM节点操作方法总结
2016/08/23 Javascript
JS实现表单验证功能(验证手机号是否存在,验证码倒计时)
2016/10/11 Javascript
AngularJS入门教程之Cookies读写操作示例
2016/11/02 Javascript
微信小程序中页面FOR循环和嵌套循环
2017/06/21 Javascript
vue.js实现单选框、复选框和下拉框示例
2017/07/18 Javascript
微信小程序 页面滑动事件的实例详解
2017/10/12 Javascript
学习jQuery中的noConflict()用法
2018/09/28 jQuery
JS实现简易留言板增删功能
2020/02/08 Javascript
javascript 函数的暂停和恢复实例详解
2020/04/25 Javascript
JavaScript代码实现微博批量取消关注功能
2021/02/05 Javascript
Python中使用haystack实现django全文检索搜索引擎功能
2017/08/26 Python
Python3 处理JSON的实例详解
2017/10/29 Python
Python 内置函数memoryview(obj)的具体用法
2017/11/23 Python
python验证码识别实例代码
2018/02/03 Python
在python中安装basemap的教程
2018/09/20 Python
python selenium 弹出框处理的实现
2019/02/26 Python
详解pandas的外部数据导入与常用方法
2019/05/01 Python
Django ModelForm组件使用方法详解
2019/07/23 Python
djano一对一、多对多、分页实例代码
2019/08/16 Python
Python 去除字符串中指定字符串
2020/03/05 Python
Giglio德国网上精品店:奢侈品服装和配件
2016/09/23 全球购物
家居设计专业个人自荐信范文
2013/11/26 职场文书
2014-2015学年工作总结
2014/11/27 职场文书
初三英语教学计划
2015/01/23 职场文书
实验室安全管理制度
2015/08/05 职场文书
Python常遇到的错误和异常
2021/11/02 Python
SQL Server Agent 服务无法启动
2022/04/20 SQL Server