Python实现的径向基(RBF)神经网络示例


Posted in Python onFebruary 06, 2018

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:

from numpy import array, append, vstack, transpose, reshape, \
         dot, true_divide, mean, exp, sqrt, log, \
         loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
  return norm(a - b)
def gaussian (x, mu, sigma):
  return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
  r = metrics(mu,x)
  return (r**2) * log(r)
class Rbf:
  def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
    self.prefix = prefix
    self.workers = workers
    self.extra_neurons = extra_neurons
    # Import partial model
    if from_files is not None:
      w_handle = self.w_handle = File(from_files['w'], 'r')
      mu_handle = self.mu_handle = File(from_files['mu'], 'r')
      sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
      self.w = w_handle['w']
      self.mu = mu_handle['mu']
      self.sigmas = sigma_handle['sigmas']
      self.neurons = self.sigmas.shape[0]
  def _calculate_error(self, y):
    self.error = mean(abs(self.os - y))
    self.relative_error = true_divide(self.error, mean(y))
  def _generate_mu(self, x):
    n = self.n
    extra_neurons = self.extra_neurons
    # TODO: Make reusable
    mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
    mu_indices = sample(range(n), extra_neurons)
    mu_new = x[mu_indices, :]
    mu = vstack((mu_clusters, mu_new))
    return mu
  def _calculate_sigmas(self):
    neurons = self.neurons
    mu = self.mu
    sigmas = zeros((neurons, ))
    for i in xrange(neurons):
      dists = [0 for _ in xrange(neurons)]
      for j in xrange(neurons):
        if i != j:
          dists[j] = metrics(mu[i], mu[j])
      sigmas[i] = mean(dists)* 2
           # max(dists) / sqrt(neurons * 2))
    return sigmas
  def _calculate_phi(self, x):
    C = self.workers
    neurons = self.neurons
    mu = self.mu
    sigmas = self.sigmas
    phi = self.phi = None
    n = self.n
    def heavy_lifting(c, phi):
      s = jobs[c][1] - jobs[c][0]
      for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
        for j in xrange(neurons):
          # phi[i, j] = metrics(x[i,:], mu[j])**3)
          # phi[i, j] = plateSpine(x[i,:], mu[j]))
          # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
          phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
          # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
        if k % 1000 == 0:
          percent = true_divide(k, s)*100
          print(c, ': {:2.2f}%'.format(percent))
      print(c, ': Done')
    # distributing the work between 4 workers
    shared_array = Array(c_double, n * neurons)
    phi = frombuffer(shared_array.get_obj())
    phi = phi.reshape((n, neurons))
    jobs = []
    workers = []
    p = n / C
    m = n % C
    for c in range(C):
      jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
      worker = Process(target = heavy_lifting, args = (c, phi))
      workers.append(worker)
      worker.start()
    for worker in workers:
      worker.join()
    return phi
  def _do_algebra(self, y):
    phi = self.phi
    w = lstsq(phi, y)[0]
    os = dot(w, transpose(phi))
    return w, os
    # Saving to HDF5
    os_h5 = os_handle.create_dataset('os', data = os)
  def train(self, x, y):
    self.n = x.shape[0]
    ## Initialize HDF5 caches
    prefix = self.prefix
    postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
    name_template = prefix + '-{}-' + postfix
    phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
    os_handle = self.w_handle = File(name_template.format('os'), 'w')
    w_handle = self.w_handle = File(name_template.format('w'), 'w')
    mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
    sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
    ## Mu generation
    mu = self.mu = self._generate_mu(x)
    self.neurons = mu.shape[0]
    print('({} neurons)'.format(self.neurons))
    # Save to HDF5
    mu_h5 = mu_handle.create_dataset('mu', data = mu)
    ## Sigma calculation
    print('Calculating Sigma...')
    sigmas = self.sigmas = self._calculate_sigmas()
    # Save to HDF5
    sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
    print('Done')
    ## Phi calculation
    print('Calculating Phi...')
    phi = self.phi = self._calculate_phi(x)
    print('Done')
    # Saving to HDF5
    print('Serializing...')
    phi_h5 = phi_handle.create_dataset('phi', data = phi)
    del phi
    self.phi = phi_h5
    print('Done')
    ## Algebra
    print('Doing final algebra...')
    w, os = self.w, _ = self._do_algebra(y)
    # Saving to HDF5
    w_h5 = w_handle.create_dataset('w', data = w)
    os_h5 = os_handle.create_dataset('os', data = os)
    ## Calculate error
    self._calculate_error(y)
    print('Done')
  def predict(self, test_data):
    mu = self.mu = self.mu.value
    sigmas = self.sigmas = self.sigmas.value
    w = self.w = self.w.value
    print('Calculating phi for test data...')
    phi = self._calculate_phi(test_data)
    os = dot(w, transpose(phi))
    savetxt('iok3834.txt', os, delimiter='\n')
    return os
  @property
  def summary(self):
    return '\n'.join( \
      ['-----------------',
      'Training set size: {}'.format(self.n),
      'Hidden layer size: {}'.format(self.neurons),
      '-----------------',
      'Absolute error  : {:02.2f}'.format(self.error),
      'Relative error  : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
  mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
  sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
  w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
  n = test_data.shape[0]
  neur = mu.shape[0]
  mu = transpose(mu)
  mu.reshape((n, neur))
  phi = zeros((n, neur))
  for i in range(n):
    for j in range(neur):
      phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
  os = dot(w, transpose(phi))
  savetxt('iok3834.txt', os, delimiter='\n')
  return os

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
使用Python编写简单的端口扫描器的实例分享
Dec 18 Python
OpenCV实现人脸识别
Apr 07 Python
轻松理解Python 中的 descriptor
Sep 15 Python
Python创建二维数组实例(关于list的一个小坑)
Nov 07 Python
python定时利用QQ邮件发送天气预报的实例
Nov 17 Python
Python简单实现网页内容抓取功能示例
Jun 07 Python
Pycharm 2020最新永久激活码(附最新激活码和插件)
Sep 17 Python
Python Websocket服务端通信的使用示例
Feb 25 Python
Python递归实现打印多重列表代码
Feb 27 Python
使用Python matplotlib作图时,设置横纵坐标轴数值以百分比(%)显示
May 16 Python
python 实现IP子网计算
Feb 18 Python
Python数据可视化之Seaborn的安装及使用
Apr 19 Python
python实现淘宝秒杀聚划算抢购自动提醒源码
Jun 23 #Python
初探TensorFLow从文件读取图片的四种方式
Feb 06 #Python
用十张图详解TensorFlow数据读取机制(附代码)
Feb 06 #Python
Python实现matplotlib显示中文的方法详解
Feb 06 #Python
Python实现自动上京东抢手机
Feb 06 #Python
Python获取指定文件夹下的文件名的方法
Feb 06 #Python
TensorFlow如何实现反向传播
Feb 06 #Python
You might like
PHP 解决utf-8和gb2312编码转换问题
2010/03/18 PHP
深入php常用函数的使用汇总
2013/06/08 PHP
php中mkdir函数用法实例分析
2014/11/15 PHP
Yii针对添加行的增删改查操作示例
2016/10/18 PHP
详解php中空字符串和0之间的关系
2016/10/23 PHP
PHP框架实现WebSocket在线聊天通讯系统
2019/11/21 PHP
jquery 常用操作方法
2010/01/28 Javascript
js querySelector和getElementById通过id获取元素的区别
2012/04/20 Javascript
AngularJS语法详解
2015/01/23 Javascript
JS验证邮件地址格式方法小结
2015/12/01 Javascript
理解JS事件循环
2016/01/07 Javascript
JS动态计算移动端rem的解决方案
2016/10/14 Javascript
jQuery插件FusionWidgets实现的Cylinder图效果示例【附demo源码】
2017/03/23 jQuery
使用canvas及js简单生成验证码方法
2017/04/02 Javascript
JS实现的简单拖拽购物车功能示例【附源码下载】
2018/01/03 Javascript
vue实现分页组件
2020/06/16 Javascript
JavaScript实现点击切换验证码及校验
2021/01/10 Javascript
[03:22]DOTA2超级联赛专访单车:找到属于自己的英雄
2013/06/08 DOTA
python正则表达式抓取成语网站
2013/11/20 Python
python解决汉字编码问题:Unicode Decode Error
2017/01/19 Python
Python时间戳使用和相互转换详解
2017/12/11 Python
python ansible服务及剧本编写
2017/12/29 Python
Python实现快速傅里叶变换的方法(FFT)
2018/07/21 Python
Python分割指定页数的pdf文件方法
2018/10/26 Python
pycharm 的Structure界面设置操作
2021/02/05 Python
世界上最大的汽车共享网站:Zipcar
2017/01/14 全球购物
百联网上商城:i百联
2017/01/28 全球购物
Carter’s OshKosh加拿大:购买婴幼儿服装和童装
2018/11/27 全球购物
手机被没收检讨书
2014/02/22 职场文书
2014党员学习兰辉先进事迹思想汇报
2014/09/17 职场文书
中韩经贸翻译专业大学生职业生涯规划范文
2014/09/18 职场文书
2014年教师业务工作总结
2014/12/19 职场文书
庭外和解协议书
2016/03/23 职场文书
MySQL root密码的重置方法
2021/04/21 MySQL
SQL实现LeetCode(176.第二高薪水)
2021/08/04 MySQL
排查Tomcat进程假死的问题
2022/05/06 Servers