Python实现的径向基(RBF)神经网络示例


Posted in Python onFebruary 06, 2018

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:

from numpy import array, append, vstack, transpose, reshape, \
         dot, true_divide, mean, exp, sqrt, log, \
         loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
  return norm(a - b)
def gaussian (x, mu, sigma):
  return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
  r = metrics(mu,x)
  return (r**2) * log(r)
class Rbf:
  def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
    self.prefix = prefix
    self.workers = workers
    self.extra_neurons = extra_neurons
    # Import partial model
    if from_files is not None:
      w_handle = self.w_handle = File(from_files['w'], 'r')
      mu_handle = self.mu_handle = File(from_files['mu'], 'r')
      sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
      self.w = w_handle['w']
      self.mu = mu_handle['mu']
      self.sigmas = sigma_handle['sigmas']
      self.neurons = self.sigmas.shape[0]
  def _calculate_error(self, y):
    self.error = mean(abs(self.os - y))
    self.relative_error = true_divide(self.error, mean(y))
  def _generate_mu(self, x):
    n = self.n
    extra_neurons = self.extra_neurons
    # TODO: Make reusable
    mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
    mu_indices = sample(range(n), extra_neurons)
    mu_new = x[mu_indices, :]
    mu = vstack((mu_clusters, mu_new))
    return mu
  def _calculate_sigmas(self):
    neurons = self.neurons
    mu = self.mu
    sigmas = zeros((neurons, ))
    for i in xrange(neurons):
      dists = [0 for _ in xrange(neurons)]
      for j in xrange(neurons):
        if i != j:
          dists[j] = metrics(mu[i], mu[j])
      sigmas[i] = mean(dists)* 2
           # max(dists) / sqrt(neurons * 2))
    return sigmas
  def _calculate_phi(self, x):
    C = self.workers
    neurons = self.neurons
    mu = self.mu
    sigmas = self.sigmas
    phi = self.phi = None
    n = self.n
    def heavy_lifting(c, phi):
      s = jobs[c][1] - jobs[c][0]
      for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
        for j in xrange(neurons):
          # phi[i, j] = metrics(x[i,:], mu[j])**3)
          # phi[i, j] = plateSpine(x[i,:], mu[j]))
          # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
          phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
          # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
        if k % 1000 == 0:
          percent = true_divide(k, s)*100
          print(c, ': {:2.2f}%'.format(percent))
      print(c, ': Done')
    # distributing the work between 4 workers
    shared_array = Array(c_double, n * neurons)
    phi = frombuffer(shared_array.get_obj())
    phi = phi.reshape((n, neurons))
    jobs = []
    workers = []
    p = n / C
    m = n % C
    for c in range(C):
      jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
      worker = Process(target = heavy_lifting, args = (c, phi))
      workers.append(worker)
      worker.start()
    for worker in workers:
      worker.join()
    return phi
  def _do_algebra(self, y):
    phi = self.phi
    w = lstsq(phi, y)[0]
    os = dot(w, transpose(phi))
    return w, os
    # Saving to HDF5
    os_h5 = os_handle.create_dataset('os', data = os)
  def train(self, x, y):
    self.n = x.shape[0]
    ## Initialize HDF5 caches
    prefix = self.prefix
    postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
    name_template = prefix + '-{}-' + postfix
    phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
    os_handle = self.w_handle = File(name_template.format('os'), 'w')
    w_handle = self.w_handle = File(name_template.format('w'), 'w')
    mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
    sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
    ## Mu generation
    mu = self.mu = self._generate_mu(x)
    self.neurons = mu.shape[0]
    print('({} neurons)'.format(self.neurons))
    # Save to HDF5
    mu_h5 = mu_handle.create_dataset('mu', data = mu)
    ## Sigma calculation
    print('Calculating Sigma...')
    sigmas = self.sigmas = self._calculate_sigmas()
    # Save to HDF5
    sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
    print('Done')
    ## Phi calculation
    print('Calculating Phi...')
    phi = self.phi = self._calculate_phi(x)
    print('Done')
    # Saving to HDF5
    print('Serializing...')
    phi_h5 = phi_handle.create_dataset('phi', data = phi)
    del phi
    self.phi = phi_h5
    print('Done')
    ## Algebra
    print('Doing final algebra...')
    w, os = self.w, _ = self._do_algebra(y)
    # Saving to HDF5
    w_h5 = w_handle.create_dataset('w', data = w)
    os_h5 = os_handle.create_dataset('os', data = os)
    ## Calculate error
    self._calculate_error(y)
    print('Done')
  def predict(self, test_data):
    mu = self.mu = self.mu.value
    sigmas = self.sigmas = self.sigmas.value
    w = self.w = self.w.value
    print('Calculating phi for test data...')
    phi = self._calculate_phi(test_data)
    os = dot(w, transpose(phi))
    savetxt('iok3834.txt', os, delimiter='\n')
    return os
  @property
  def summary(self):
    return '\n'.join( \
      ['-----------------',
      'Training set size: {}'.format(self.n),
      'Hidden layer size: {}'.format(self.neurons),
      '-----------------',
      'Absolute error  : {:02.2f}'.format(self.error),
      'Relative error  : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
  mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
  sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
  w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
  n = test_data.shape[0]
  neur = mu.shape[0]
  mu = transpose(mu)
  mu.reshape((n, neur))
  phi = zeros((n, neur))
  for i in range(n):
    for j in range(neur):
      phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
  os = dot(w, transpose(phi))
  savetxt('iok3834.txt', os, delimiter='\n')
  return os

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
在Python操作时间和日期之asctime()方法的使用
May 22 Python
Python3中的2to3转换工具使用示例
Jun 12 Python
Python正则表达式实现截取成对括号的方法
Jan 06 Python
Python实现的中国剩余定理算法示例
Aug 05 Python
python实现神经网络感知器算法
Dec 20 Python
Python人脸识别初探
Dec 21 Python
python给微信好友定时推送消息的示例
Feb 20 Python
Python测试模块doctest使用解析
Aug 10 Python
TensorBoard 计算图的可视化实现
Feb 15 Python
完美解决pyinstaller打包报错找不到依赖pypiwin32或pywin32-ctypes的错误
Apr 01 Python
python实现学生成绩测评系统
Jun 22 Python
Python NumPy灰度图像的压缩原理讲解
Aug 04 Python
python实现淘宝秒杀聚划算抢购自动提醒源码
Jun 23 #Python
初探TensorFLow从文件读取图片的四种方式
Feb 06 #Python
用十张图详解TensorFlow数据读取机制(附代码)
Feb 06 #Python
Python实现matplotlib显示中文的方法详解
Feb 06 #Python
Python实现自动上京东抢手机
Feb 06 #Python
Python获取指定文件夹下的文件名的方法
Feb 06 #Python
TensorFlow如何实现反向传播
Feb 06 #Python
You might like
老照片 - 几十年前的收音机与人
2021/03/02 无线电
php使用mb_check_encoding检查字符串在指定的编码里是否有效
2013/11/07 PHP
PH P5.2至5.5、5.6的新增功能详解
2014/07/14 PHP
php通过正则表达式记取数据来读取xml的方法
2015/03/09 PHP
symfony2.4的twig中date用法分析
2016/03/18 PHP
基于JQuery的一句话搞定手风琴菜单
2012/09/14 Javascript
JSuggest自动匹配下拉框使用方法(示例代码)
2013/12/27 Javascript
JQuery为页面Dom元素绑定事件及解除绑定方法
2014/04/23 Javascript
Angularjs实现搜索关键字高亮显示效果
2017/01/17 Javascript
使用node.js搭建服务器
2017/05/20 Javascript
快速将Vue项目升级到webpack3的方法步骤
2017/09/14 Javascript
vuejs前后端数据交互之从后端请求数据的实例
2018/08/11 Javascript
vue如何进行动画的封装
2018/09/26 Javascript
vue quill editor 使用富文本添加上传音频功能
2020/01/14 Javascript
Python中的二叉树查找算法模块使用指南
2014/07/04 Python
Python基于列表模拟堆栈和队列功能示例
2018/01/05 Python
python利用百度AI实现文字识别功能
2018/11/27 Python
python中数组和矩阵乘法及使用总结(推荐)
2019/05/18 Python
Python绘图实现显示中文
2019/12/04 Python
如何让python的运行速度得到提升
2020/07/08 Python
解决Pycharm双击图标启动不了的问题(JetBrains全家桶通用)
2020/08/07 Python
python调用摄像头的示例代码
2020/09/28 Python
印度网上购物首选目的地:Flipkart
2016/08/01 全球购物
倩碧香港官方网站:Clinique香港
2017/11/13 全球购物
Java里面StringBuilder和StringBuffer有什么区别
2016/06/06 面试题
会计专业自我鉴定范文
2013/12/29 职场文书
关于圣诞节的广播稿
2014/01/26 职场文书
小学生打架检讨书
2014/01/26 职场文书
中学生运动会入场词
2014/02/12 职场文书
毕业论文指导教师评语
2014/12/30 职场文书
关于感谢信的范文
2015/01/23 职场文书
2015年酒店年度工作总结
2015/05/23 职场文书
网聊搭讪开场白
2015/05/28 职场文书
2016年小学生清明节广播稿
2015/12/17 职场文书
MybatisPlus代码生成器的使用方法详解
2021/06/13 Java/Android
OpenCV实现反阈值二值化
2021/11/17 Java/Android