目录
前言:
ForkJoin
是在Java7中新加入的特性,大家可能对其比较陌生,但是Java8中Stream
的并行流parallelStream就是依赖于ForkJoin。在ForkJoin体系中最为关键的就是ForkJoinTask和ForkJoinPool,ForkJoin就是利用分治的思想将大的任务按照一定规则Fork拆分成小任务,再通过Join聚合起来。
什么是ForkJoin?
ForkJoin 从字面上看Fork是分岔的意思,Join是结合的意思,我们可以理解为将大任务拆分成小任务进行计算求解,最后将小任务的结果进行结合求出大任务的解,这些裂变出来的小任务,我们就可以交给不同的线程去进行计算,这也就是分布式计算的一种思想。这与大数据中的分布式离线计算MapReduce类似,对ForkJoin最经典的一个应用就是Java8中的Stream,我们知道Stream分为串行流和并行流,其中并行流parallelStream就是依赖于ForkJoin来实现并行处理的。
下面我们一起来看一下最为核心的ForkJoinTask
和ForkJoinPool
。
ForkJoinTask 任务
ForkJoinTask本身的依赖关系并不复杂,它与异步任务计算FutureTask一样均实现了Future接口,FutureTask我们在之前的文章中有讲到感兴趣的可以阅读一下——Java 异步任务计算FutureTask
下面我们就ForkJoinTask的核心源码来研究一下,该任务是如何通过分治法进行计算。
ForkJoinTask最核心的莫过于fork()和join()方法了。
fork()
- 判断当前线程是不是ForkJoinWorkerThread线程
- 是 直接将当前线程push到工作队列中
- 否 调用ForkJoinPool 的externalPush方法
在ForkJoinPool
构建了一个静态的common对象,这里调用的就是common
的externalPush()
join()
- 调用doJoin()方法,等待线程执行完成
public final ForkJoinTask<V> fork() {
Thread t;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
((ForkJoinWorkerThread)t).workQueue.push(this);
else
ForkJoinPool.common.externalPush(this);
return this;
}
public final V join() {
int s;
if ((s = doJoin() & DONE_MASK) != NORMAL)
reportException(s);
return getRawResult();
}
private int doJoin() {
int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
return (s = status) < 0 ? s :
((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(w = (wt = (ForkJoinWorkerThread)t).workQueue).
tryUnpush(this) && (s = doExec()) < 0 ? s :
wt.pool.awaitJoin(w, this, 0L) :
externalAwaitDone();
}
// 获取结果的方法由子类实现
public abstract V getRawResult();
RecursiveTask 是ForkJoinTask的一个子类主要对获取结果的方法进行了实现,通过泛型约束结果。我们如果需要自己创建任务,仍需要实现RecursiveTask,并去编写最为核心的计算方法compute()。
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
private static final long serialVersionUID = 5232453952276485270L;
V result;
protected abstract V compute();
public final V getRawResult() {
return result;
}
protected final void setRawResult(V value) {
result = value;
}
protected final boolean exec() {
result = compute();
return true;
}
}
ForkJoinPool 线程池
ForkJoinTask 中许多功能都依赖于ForkJoinPool线程池,所以说ForkJoinTask运行离不开ForkJoinPool,ForkJoinPool与ThreadPoolExecutor有许多相似之处,他是专门用来执行ForkJoinTask任务的线程池,我之前也有文章对线程池技术进行了介绍,感兴趣的可以进行阅读——JAVA 线程池(池化技术)的实现原理
ForkJoinPool与ThreadPoolExecutor的继承关系几乎是相同的,他们相当于兄弟关系。
工作窃取算法
ForkJoinPool中采取工作窃取算法,如果每次fork子任务如果都去创建新线程去处理的话,对系统资源的开销是巨大的,所以必须采取线程池。一般的线程池只有一个任务队列,但是对于ForkJoinPool来说,由于同一个任务Fork出的各个子任务是平行关系,为了提高效率,减少线程的竞争,需要将这些平行的任务放到不同的队列中,由于线程处理不同任务的速度不同,这样就可能存在某个线程先执行完了自己队列中的任务,这时为了提升效率,就可以让该线程去“窃取”其它任务队列中的任务,这就是所谓的“工作窃取算法”。
对于一般的队列来说,入队元素都是在队尾,出队元素在队首,要满足“工作窃取”的需求,任务队列应该支持从“队尾”出队元素,这样可以减少与其它工作线程的冲突(因为其它工作线程会从队首获取自己任务队列中的任务),这时就需要使用双端阻塞队列来解决。
构造方法
首先我们来看ForkJoinPool线程池的构造方法,他为我们提供了三种形式的构造,其中最为复杂的是四个入参的构造,下面我们看一下它四个入参都代表什么?
- int parallelism 可并行级别(不代表最多存在的线程数量)
- ForkJoinWorkerThreadFactory factory 线程创建工厂
- UncaughtExceptionHandler handler 异常捕获处理器
- boolean asyncMode 先进先出的工作模式 或者 后进先出的工作模式
public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false);
}
public ForkJoinPool(int parallelism) {
this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
}
public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode) {
this(checkParallelism(parallelism),
checkFactory(factory),
handler,
asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
"ForkJoinPool-" + nextPoolId() + "-worker-");
checkPermission();
}
提交方法
下面我们看一下提交任务的方法:
externalPush
这个方法我们很眼熟,它正是在fork的时候如果当前线程不是ForkJoinWorkerThread,新提交任务也是会通过这个方法去执行任务。由此可见,fork就是新建一个子任务进行提交。
externalSubmit
是最为核心的一个方法,它可以首次向池提交第一个任务,并执行二次初始化。它还可以检测外部线程的首次提交,并创建一个新的共享队列。
signalWork
(ws, q)是发送工作信号,让工作队列进行运转。
public ForkJoinTask<?> submit(Runnable task) {
if (task == null)
throw new NullPointerException();
ForkJoinTask<?> job;
if (task instanceof ForkJoinTask<?>) // avoid re-wrap
job = (ForkJoinTask<?>) task;
else
job = new ForkJoinTask.AdaptedRunnableAction(task);
externalPush(job);
return job;
}
final void externalPush(ForkJoinTask<?> task) {
WorkQueue[] ws; WorkQueue q; int m;
int r = ThreadLocalRandom.getProbe();
int rs = runState;
if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
(q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a; int am, n, s;
if ((a = q.array) != null &&
(am = a.length - 1) > (n = (s = q.top) - q.base)) {
int j = ((am & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
U.putOrderedInt(q, QLOCK, 0);
if (n <= 1)
signalWork(ws, q);
return;
}
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
externalSubmit(task);
}
private void externalSubmit(ForkJoinTask<?> task) {
int r; // initialize caller's probe
if ((r = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit();
r = ThreadLocalRandom.getProbe();
}
for (;;) {
WorkQueue[] ws; WorkQueue q; int rs, m, k;
boolean move = false;
if ((rs = runState) < 0) {
tryTerminate(false, false); // help terminate
throw new RejectedExecutionException();
}
else if ((rs & STARTED) == 0 || // initialize
((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
int ns = 0;
rs = lockRunState();
try {
if ((rs & STARTED) == 0) {
U.compareAndSwapObject(this, STEALCOUNTER, null,
new AtomicLong());
// create workQueues array with size a power of two
int p = config & SMASK; // ensure at least 2 slots
int n = (p > 1) ? p - 1 : 1;
n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
workQueues = new WorkQueue[n];
ns = STARTED;
}
} finally {
unlockRunState(rs, (rs & ~RSLOCK) | ns);
}
}
else if ((q = ws[k = r & m & SQMASK]) != null) {
if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a = q.array;
int s = q.top;
boolean submitted = false; // initial submission or resizing
try { // locked version of push
if ((a != null && a.length > s + 1 - q.base) ||
(a = q.growArray()) != null) {
int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
submitted = true;
}
} finally {
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
if (submitted) {
signalWork(ws, q);
return;
}
}
move = true; // move on failure
}
else if (((rs = runState) & RSLOCK) == 0) { // create new queue
q = new WorkQueue(this, null);
q.hint = r;
q.config = k | SHARED_QUEUE;
q.scanState = INACTIVE;
rs = lockRunState(); // publish index
if (rs > 0 && (ws = workQueues) != null &&
k < ws.length && ws[k] == null)
ws[k] = q; // else terminated
unlockRunState(rs, rs & ~RSLOCK);
}
else
move = true; // move if busy
if (move)
r = ThreadLocalRandom.advanceProbe(r);
}
}
创建工人(线程)
提交任务后,通过signalWork
(ws, q)方法,发送工作信号,当符合没有执行完毕,且没有出现异常的条件下,循环执行任务,根据控制变量尝试添加工人(线程),通过线程工厂,生成线程,并且启动线程,也控制着工人(线程)的下岗。
final void signalWork(WorkQueue[] ws, WorkQueue q) {
long c; int sp, i; WorkQueue v; Thread p;
while ((c = ctl) < 0L) { // too few active
if ((sp = (int)c) == 0) { // no idle workers
if ((c & ADD_WORKER) != 0L) // too few workers
tryAddWorker(c);
break;
}
if (ws == null) // unstarted/terminated
break;
if (ws.length <= (i = sp & SMASK)) // terminated
break;
if ((v = ws[i]) == null) // terminating
break;
int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
int d = sp - v.scanState; // screen CAS
long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
v.scanState = vs; // activate v
if ((p = v.parker) != null)
U.unpark(p);
break;
}
if (q != null && q.base == q.top) // no more work
break;
}
}
private void tryAddWorker(long c) {
boolean add = false;
do {
long nc = ((AC_MASK & (c + AC_UNIT)) |
(TC_MASK & (c + TC_UNIT)));
if (ctl == c) {
int rs, stop; // check if terminating
if ((stop = (rs = lockRunState()) & STOP) == 0)
add = U.compareAndSwapLong(this, CTL, c, nc);
unlockRunState(rs, rs & ~RSLOCK);
if (stop != 0)
break;
if (add) {
createWorker();
break;
}
}
} while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
}
private boolean createWorker() {
ForkJoinWorkerThreadFactory fac = factory;
Throwable ex = null;
ForkJoinWorkerThread wt = null;
try {
if (fac != null && (wt = fac.newThread(this)) != null) {
wt.start();
return true;
}
} catch (Throwable rex) {
ex = rex;
}
deregisterWorker(wt, ex);
return false;
}
final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
WorkQueue w = null;
if (wt != null && (w = wt.workQueue) != null) {
WorkQueue[] ws; // remove index from array
int idx = w.config & SMASK;
int rs = lockRunState();
if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
ws[idx] = null;
unlockRunState(rs, rs & ~RSLOCK);
}
long c; // decrement counts
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
(TC_MASK & (c - TC_UNIT)) |
(SP_MASK & c))));
if (w != null) {
w.qlock = -1; // ensure set
w.transferStealCount(this);
w.cancelAll(); // cancel remaining tasks
}
for (;;) { // possibly replace
WorkQueue[] ws; int m, sp;
if (tryTerminate(false, false) || w == null || w.array == null ||
(runState & STOP) != 0 || (ws = workQueues) == null ||
(m = ws.length - 1) < 0) // already terminating
break;
if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
if (tryRelease(c, ws[sp & m], AC_UNIT))
break;
}
else if (ex != null && (c & ADD_WORKER) != 0L) {
tryAddWorker(c); // create replacement
break;
}
else // don't need replacement
break;
}
if (ex == null) // help clean on way out
ForkJoinTask.helpExpungeStaleExceptions();
else // rethrow
ForkJoinTask.rethrow(ex);
}
public static interface ForkJoinWorkerThreadFactory {
public ForkJoinWorkerThread newThread(ForkJoinPool pool);
}
static final class DefaultForkJoinWorkerThreadFactory
implements ForkJoinWorkerThreadFactory {
public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
return new ForkJoinWorkerThread(pool);
}
}
protected ForkJoinWorkerThread(ForkJoinPool pool) {
// Use a placeholder until a useful name can be set in registerWorker
super("aForkJoinWorkerThread");
this.pool = pool;
this.workQueue = pool.registerWorker(this);
}
final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
UncaughtExceptionHandler handler;
wt.setDaemon(true); // configure thread
if ((handler = ueh) != null)
wt.setUncaughtExceptionHandler(handler);
WorkQueue w = new WorkQueue(this, wt);
int i = 0; // assign a pool index
int mode = config & MODE_MASK;
int rs = lockRunState();
try {
WorkQueue[] ws; int n; // skip if no array
if ((ws = workQueues) != null && (n = ws.length) > 0) {
int s = indexSeed += SEED_INCREMENT; // unlikely to collide
int m = n - 1;
i = ((s << 1) | 1) & m; // odd-numbered indices
if (ws[i] != null) { // collision
int probes = 0; // step by approx half n
int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
while (ws[i = (i + step) & m] != null) {
if (++probes >= n) {
workQueues = ws = Arrays.copyOf(ws, n <<= 1);
m = n - 1;
probes = 0;
}
}
}
w.hint = s; // use as random seed
w.config = i | mode;
w.scanState = i; // publication fence
ws[i] = w;
}
} finally {
unlockRunState(rs, rs & ~RSLOCK);
}
wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
return w;
}
例:ForkJoinTask实现归并排序
这里我们就用经典的归并排序为例,构建一个我们自己的ForkJoinTask,按照归并排序的思路,重写其核心的compute()方法,通过ForkJoinPool.submit(task)提交任务,通过get()同步获取任务执行结果。
package com.zhj.interview;
import java.util.*;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
public class Test16 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
int[] bigArr = new int[10000000];
for (int i = 0; i < 10000000; i++) {
bigArr[i] = (int) (Math.random() * 10000000);
}
ForkJoinPool forkJoinPool = new ForkJoinPool();
MyForkJoinTask task = new MyForkJoinTask(bigArr);
long start = System.currentTimeMillis();
forkJoinPool.submit(task).get();
long end = System.currentTimeMillis();
System.out.println("耗时:" + (end-start));
}
}
class MyForkJoinTask extends RecursiveTask<int[]> {
private int source[];
public MyForkJoinTask(int source[]) {
if (source == null) {
throw new RuntimeException("参数有误!!!");
}
this.source = source;
}
@Override
protected int[] compute() {
int l = source.length;
if (l < 2) {
return Arrays.copyOf(source, l);
}
if (l == 2) {
if (source[0] > source[1]) {
int[] tar = new int[2];
tar[0] = source[1];
tar[1] = source[0];
return tar;
} else {
return Arrays.copyOf(source, l);
}
}
if (l > 2) {
int mid = l / 2;
MyForkJoinTask task1 = new MyForkJoinTask(Arrays.copyOf(source, mid));
task1.fork();
MyForkJoinTask task2 = new MyForkJoinTask(Arrays.copyOfRange(source, mid, l));
task2.fork();
int[] res1 = task1.join();
int[] res2 = task2.join();
int tar[] = merge(res1, res2);
return tar;
}
return null;
}
// 合并数组
private int[] merge(int[] res1, int[] res2) {
int l1 = res1.length;
int l2 = res2.length;
int l = l1 + l2;
int tar[] = new int[l];
for (int i = 0, i1 = 0, i2 = 0; i < l; i++) {
int v1 = i1 >= l1 ? Integer.MAX_VALUE : res1[i1];
int v2 = i2 >= l2 ? Integer.MAX_VALUE : res2[i2];
// 如果条件成立,说明应该取数组array1中的值
if(v1 < v2) {
tar[i] = v1;
i1++;
} else {
tar[i] = v2;
i2++;
}
}
return tar;
}
}
ForkJoin计算流程
通过ForkJoinPool提交任务,获取结果流程如下,拆分子任务不一定是二分的形式,可参照MapReduce的模式,也可以按照具体需求进行灵活的设计。
到此这篇关于一文带你了解Java中的ForkJoin的文章就介绍到这了!
带你了解Java中的ForkJoin
- Author -
CoderJie- Original Sources -
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Tags in this post...
Reply on: @reply_date@
@reply_contents@